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1. Microscopic dielectric theory

In this chapter we revisit the classical dielectric response of a material and outline it’s con-
nection to a quantum mechanical expectation value of the so-called density-fluctuation op-
erator. The evaluation of this expectation value is the main goal of the Bethe-Salpeter
equation formalism discussed in section 2.3.4 and chapter 3.

In section 1.1 we first recapitulate Maxwell’s equations within a medium and discuss the
so-called material equations. The material equations constitute linear response functions
which link external and induced quantities of Maxwell’s theory. The microscopic dielectric
tensor 𝜀 is introduced in section 1.2 as the main material equation of interest, and the longi-
tudinal and transversal response formalism is discussed. In section 1.3 we then demonstrate
how 𝜀 can be computed quantum mechanically using first-order time-dependent perturba-
tion theory. In section 1.4 the connection to the dynamical structure factor and to the op-
tical absorption spectrum is given. Lastly, in section 1.5 the case of a crystalline system
is discussed. In this chapter we mainly follow the notation of [1] and keep the notation in
SI-units.

1.1. Microscopic Maxwell equations

When considering the interaction of a solid with an external electromagnetic field, the
Maxwell equations are commonly written in terms of external and induced quantities. For
example, the total charge density in the material can be split into the charge density of the
unperturbed system 𝜌0, an externally introduced charge density 𝜌ext, and an induced charge
density 𝜌ind that describes the change of 𝜌0 due to 𝜌ext:

𝜌total = 𝜌ext + 𝜌ind + 𝜌0. (1.1)

By doing the same for the current and the fields, the Maxwell equations can be solved
excluding the unperturbed quantities. Then,

𝜌 = 𝜌ext + 𝜌ind (1.2)

denotes the charge density difference with respect to the unperturbed system. In the fol-
lowing we use the same notation for the current and fields. The induced charge density 𝜌ind
and the induced current 𝙟 ind are usually described in terms of the polarization field 𝙋 and
the magnetization field 𝙈, according to

𝜌ind = ∇ ⋅ 𝙋 and 𝙟 ind = ∂𝙋
∂𝑡

+ ∇ × 𝙈 . (1.3)
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The fields 𝙋 and 𝙈 are not uniquely defined, since ̃𝙋 = 𝙋 − ∇ × 𝐿 and �̃� = 𝙈 + ∂𝐿
∂𝑡 yield

the same density and current for any function 𝐿. By setting 𝙈 = 1
𝜇0

𝘽 ind and 𝙋 = −𝜀0𝙀 ind

Maxwell’s equations neatly separate into induced and external fields:

∇ ⋅ 𝘽 = 0 ∇ × 𝙀 + ∂𝑡𝘽 = 0 (1.4a)
∇ × 𝘽ext − 𝑐−2

0 ∂𝑡𝙀 ext = 𝜇0 𝙟 ext ∇ ⋅ 𝙀 ext = 𝜀−1
0 𝜌ext (1.4b)

∇ × 𝘽 ind − 𝑐−2
0 ∂𝑡𝙀 ind = 𝜇0 𝙟 ind ∇ ⋅ 𝙀 ind = −𝜀−1

0 𝜌ind. (1.4c)

The fields can also be expressed in terms of the electrostatic scalar potential 𝜑 and the
magnetic vector potential 𝘼 as

𝙀 (𝙧 , 𝑡) = −∇ ⋅ 𝜑(𝙧 , 𝑡) − ∂𝑡𝘼(𝙧 , 𝑡) and 𝘽(𝙧 , 𝑡) = ∇ × 𝘼(𝙧 , 𝑡). (1.5)

Additionally to the set of equations (1.4), a material equation is needed to connect the
induced quantities to the external ones. For a sufficiently small perturbation they are given
by linear response functions of the form

𝐹 ind
𝛼 (𝙧 , 𝑡) = ∑

𝛽
∬ 𝑅𝛼𝛽(𝙧 , 𝙧 ′, 𝑡 − 𝑡′)𝐹 ext

𝛽 (𝙧 ′, 𝑡′) d3𝑟′ d𝑡′ , symbolically 𝙁 ind = 𝑅𝙁 ext,

(1.6)
where 𝑅 is non-zero only for 𝑡 > 𝑡′ to ensure causality [2]. One example of such a response
function is the electrical susceptibility 𝜒 that relates the induced current to the external
electric field

∂𝑡𝙟 ind = 𝜒𝙀 ext. (1.7)

1.2. Microscopic dielectric tensor
The concept of the response functions can be generalized to also include relations between
the total fields to the external ones. In particular, we are interested in the microscopic
dielectric tensor 𝜀𝑖𝑗 that relates the external electric field 𝙀 ext to the total perturbing electric
field 𝙀. It is the key quantity in describing the response of a system to incoming light or
penetrating electrons and it is defined as

𝐸ext
𝑖 (𝙧 , 𝑡) = ∬ ∑

𝑗
𝜀𝑖𝑗(𝙧 , 𝙧 ′, 𝑡 − 𝑡′)𝐸𝑗(𝙧 ′, 𝑡′) d3𝑟 d𝑡′ , symbolically 𝙀 ext = 𝜀𝙀 . (1.8)

Decomposing the electric fields into a curl-free (longitudinal) 𝐸L and a divergence-free
(transversal) 𝐸T component

𝙀 = 𝙀L + 𝙀T where ∇ ⋅ 𝙀T = ∇ × 𝙀L = 0, (1.9)

eq. (1.8) can be split into longitudinal (L) and transversal (T) subspaces as

(
𝙀 ext
L

𝙀 ext
T ) = (

𝜀LL 𝜀LT
𝜀TL 𝜀TT)(

𝙀L
𝙀T). (1.10)
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In the following, we assume that the external perturbation is purely longitudinal and that
the resulting induced current is also purely longitudinal. Then, only the longitudinal-
longitudinal response is needed to describe the dielectric properties of the system:

𝙀 ext = 𝙀 ext
L ≈ 𝜀LL𝙀L. (1.11)

Using the Coulomb-gauge (∇ ⋅ 𝘼 = 0), this can be equivalently formulated in terms of the
longitudinal microscopic dielectric function that relates the external and the total perturbing
scalar potential

𝜑ext(𝙧 , 𝑡) = ∬ 𝜀(𝙧 , 𝙧 ′, 𝑡 − 𝑡′)𝜑(𝙧 ′, 𝑡′) d3𝑟′ d𝑡′ . (1.12)

Under these conditions the Fourier coefficients of the tensor 𝜀LL and the function 𝜀 are
related by

𝜀𝛼𝛽
LL(𝙦, 𝙦′, 𝜔) =

𝑞𝛼𝜀(𝙦, 𝙦′, 𝜔)𝑞′
𝛽

|𝙦′|2 . (1.13)

In analogy to eq. (1.12) one can introduce the (longitudinal) susceptibility 𝜒

𝜌ind(𝙧 , 𝑡) = ∬ 𝑒2𝜒(𝙧 , 𝙧 ′, 𝑡 − 𝑡′)𝜑ext(𝙧 ′, 𝑡′) d3𝑟′ d𝑡′ (1.14)

and the (longitudinal) polarizability 𝑃

𝜌ind(𝙧 , 𝑡) = ∬ 𝑒2𝑃 (𝙧 , 𝙧 ′, 𝑡 − 𝑡′)𝜑(𝙧 ′, 𝑡′) d3𝑟′ d𝑡′ . (1.15)

The dielectric function and its inverse can be expressed in terms of 𝜒 and 𝑃 as

𝜀−1 = 1 + 𝑣𝜒 and 𝜀 = 1 − 𝑣𝑃 , (1.16)

where 𝑣 denotes the Coulomb potential. The response functions 𝑃 and 𝜒 are in turn related
to each other by the Dyson equation

𝜒 = 𝑃 + 𝑃 𝑣𝜒. (1.17)

Remark. The approximation of a purely longitudinal external electric fieldmade in eq. (1.11)
is reasonable for the description of the response to an electron passing through the system.
The electric field of light, on the other hand, is purely transversal and would require a re-
sponse function relating the external and total vector potential 𝘼 (in the Coulomb gauge).
Fortunately, in the limit of long wave-lengths or vanishing 𝙦, it was shown that the purely
longitudinal and purely transversal response become equal in crystalline systems of cubic
[3] and lower [4] symmetry.
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1.3. Susceptibility from time-dependent perturbation theory
The variation of an observable 𝑓(𝑡) due to a perturbation Ĥ′(𝑡), which was switched on at
time 𝑡0, can be computed by first-order time-dependent perturbation theory according to
[5]

̃𝑓 (𝑡) = ⟨ΨS(𝑡)| ̂fS(𝑡)|ΨS(𝑡)⟩ − ⟨Ψ0
H| ̂fH(𝑡)|Ψ0

H⟩ = i
ℏ ∫

𝑡

𝑡0
⟨Ψ0

H|[Ĥ′
H(𝑡′), ̂fH(𝙧 , 𝑡)]−|Ψ0

H⟩ d𝑡′ ,

(1.18)
where the subscript H (S) denotes the Heisenberg (Schrödinger) picture and Ψ0

H is the nor-
malized ground state of the unperturbed system, while ΨS(𝑡) is the exact state of the per-
turbed system which evolves from Ψ0

S(𝑡0). If we consider a perturbation due to an external
scalar potential, Ĥ′ takes on the form

Ĥ′
H(𝑡) = ∫ ̂𝜌H(𝙧 , 𝑡)𝜑ext(𝙧 , 𝑡) d3𝑟 = ∫ n̂H(𝙧 , 𝑡)𝑒𝜑ext(𝙧 , 𝑡) d3𝑟 , (1.19)

and the variation of the density 𝑛(𝙧 ) follows as

̃𝑛(𝙧 , 𝑡) = i
ℏ ∫

𝑡

𝑡0

d𝑡′
∫ d3𝑟′ 𝑒𝜑ext(𝙧 ′, 𝑡′) ⟨Ψ0

H|[n̂H(𝙧 ′, 𝑡′), n̂H(𝙧 , 𝑡)]−|Ψ0
H⟩ . (1.20)

This can be rewritten in terms of the density deviation operator ̂ñH
̂ñH = n̂H − ⟨Ψ0

H|n̂H|Ψ0
H⟩ (1.21)

by simply replacing n̂H with ̂ñH in eq. (1.20). Then, the susceptibility defined in eq. (1.14)
can be identified with the retarded density correlation function

𝜒R(𝙧 , 𝙧 ′, 𝑡 − 𝑡′) =
𝛿𝑛ind(𝙧 , 𝑡)

𝛿𝑒𝜑ext(𝙧 ′, 𝑡′)
= −𝑖

ℏ
𝜃(𝑡 − 𝑡′) ⟨Ψ0

H|[ ̂ñH(𝙧 , 𝑡), ̂ñH(𝙧 ′, 𝑡′)]−|Ψ0
H⟩

= −𝑖
ℏ

𝜃(𝑡 − 𝑡′) ⟨Ψ0
H|[ ̂ñH(𝙧 , 𝑡 − 𝑡′ + 𝑡0), ̂ñH(𝙧 ′, 𝑡0)]−|Ψ0

H⟩ .
(1.22)

Since Ĥ is time-independent, it only depends on the time difference 𝑡 − 𝑡′. Equation (1.22)
thus connects the classical dielectric response to a quantummechanical expectation value in
the unperturbed system. In order to apply many-body perturbation methods, it is necessary
to introduce the related time-ordered density correlation function

𝜒T(𝙧 , 𝙧 ′, 𝑡 − 𝑡′) =−𝑖
ℏ ⟨Ψ0

H| ̂𝒯 [ ̂ñH(𝙧 , 𝑡) ̂ñH(𝙧 ′, 𝑡′)]|Ψ0
H⟩

=−𝑖
ℏ ⟨Ψ0

H| ̂𝒯 [ ̂ñH(𝙧 , 𝑡 − 𝑡′ + 𝑡0) ̂ñH(𝙧 ′, 𝑡0)]|Ψ0
H⟩ ,

(1.23)

where ̂𝒯 is the Wick’s time-ordering operator. There is a straightforward relation between
the retarded and time-ordered correlation functions [5]:

𝜒T(𝙧 , 𝙧 ′, 𝜔) = 𝜒R(𝙧 , 𝙧 ′, 𝜔) and 𝜒R(𝙧 , 𝙧 ′, −𝜔) = (𝜒R(𝙧 , 𝙧 ′, 𝜔))
∗ , 𝜔 > 0. (1.24)

The methods needed to evaluate eqs. (1.22) and (1.23) in a solid will be discussed in chap-
ter 2.
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1.4. Connection to measurable quantities

1.4.1. Dynamical structure factor

In both angular resolved electron energy loss spectroscopy (AR-EELS) and inelastic X-ray
scattering (IXS) the double differential cross section ∂2𝜎

∂Ω∂𝐸 is measured. It quantifies the
probability that an incoming particle (electron or photon, respectively) is scattered into the
solid angle Ω and looses the energy 𝐸. If the incoming particle can be described with
a single plane wave, the double differential cross section can be written in terms of the
dynamic structure factor 𝑆 (DSF) and the so-called probe factor 𝐶

∂2𝜎
∂Ω∂𝐸

= 𝐶(𝙦)𝑆(𝙦, 𝐸), (1.25)

where 𝙦 = 𝙠i − 𝙠f is the difference in wave vector between the incoming and the scattered
particle. The DSF is purely a property of the target material and thus it is independent
of the scattering particle. Hence, both AR-EELS and IXS allow for the determination of
the structure factor and only differ in the probe factors. When the incoming particle is
instead described by a coherent sum of plane waves, eq. (1.25) can be generalized and the
target properties are then described by themixed dynamic form factor 𝑆(𝙦, 𝙦′, 𝐸) (MDFF).
The (generalized) fluctuation-dissipation theorem now relates the (MDFF) DSF with the
retarded density correlation function [1]:

𝑆(𝙦, 𝙦′, 𝐸) = i
2𝜋 [𝜒R(𝙦, 𝙦′, 𝐸) − (𝜒R(𝙦′, 𝙦, 𝐸))

∗
] , 𝐸 > 0 (1.26a)

𝑆(𝙦, 𝐸) = 𝑆(𝙦, 𝙦, 𝐸) = − 1
𝜋

ℑ [𝜒R(𝙦, 𝙦, 𝐸)] , 𝐸 > 0. (1.26b)

The DSF can thus be connected to the microscopic dielectric function using eq. (1.16)

𝑆(𝙦, 𝜔) = − 1
𝜋

𝑣−1(𝙦)ℑ [𝜀−1(𝙦, 𝙦, 𝜔)] . (1.27)

Another related quantity is the electron energy loss function 𝐿(𝙦, 𝜔) which is defined as

𝐿(𝙦, 𝜔) = −ℑ [𝜀−1(𝙦, 𝙦, 𝜔)] . (1.28)

1.4.2. Optical absorption spectrum

In the case of vanishing 𝙦 the longitudinal dielectric function can also be used to describe
the transversal response [6, 7]. We write (see eqs. (1.10), (1.11) and (1.13))

𝜀𝛼𝛽
TT(𝜔) ≔ lim

𝑞→0
𝜀𝛼𝛽
TT(𝙦, 𝙦, 𝜔) = lim

𝑞→0
𝜀𝛼𝛽
LL(𝙦, 𝙦, 𝜔) = lim

𝑞→0

𝑞𝛼𝜀(𝙦, 𝙦, 𝜔)𝑞𝛽

|𝙦|2 . (1.29)

In experiments one generally measures an averaged response instead of the microscopic
one. In order to account for this, we average the microscopic dielectric function over some
mesoscopic volume and define the macroscopic dielectric function 𝜀M as

⟨𝜀𝛼𝛽
TT⟩ (𝜔) = lim

𝑞→0

𝑞𝛼 ⟨𝜀⟩ (𝙦, 𝙦, 𝜔)𝑞𝛽

|𝙦|2 ≕ lim
𝑞→0

𝑞𝛼𝜀M(𝙦, 𝜔)𝑞𝛽

|𝙦|2 . (1.30)
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The imaginary part the macroscopic dielectric function ℑ [𝜀M(𝜔)] is often equated with the
optical absorption spectrum [8]. Following [9], this can be motivated when we consider
the energy per unit time dissipated in the medium expressed via the induced current and
the field within the medium

𝑃 (𝑡) = ∫ 𝙟 ind(𝙧 , 𝑡)𝙀 (𝙧 , 𝑡) d3𝑟 . (1.31)

We now make the assumption that the electric field in the medium is purely transversal and
of a defined wave vector 𝙦 and frequency 𝜔, i.e.

𝙀 (𝙧 , 𝑡) = ̂𝙚𝐸0ei(𝙦𝙧−𝜔𝑡) + c.c.. (1.32)

Additionally, we assume that the induced current has the same time and space dependence
as the electric field and is linearly related to it:

𝙟 ind(𝙧 , 𝑡) = 𝜎(𝙦, 𝜔) ̂𝙚𝐸0ei(𝙦𝙧−𝜔𝑡) + c.c., (1.33)

where 𝜎 defines the transverse conductivity. Under these assumptions, 𝑃 is constant in time
and proportional to the real part of 𝜎

𝑃 ∝ |𝐸0|
2𝜎1(𝙦, 𝜔). (1.34)

Then using the Maxwell equations, 𝜎 and 𝜀 can be related, in particular the real part of 𝜎 is
given in terms of the imaginary part of 𝜀:

𝜎1(𝙦, 𝜔) ∝ 𝜔𝜀2(𝙦, 𝜔). (1.35)

Consequently, the features of the absorption spectrum are defined by those of the imaginary
part of the dielectric function. For anisotropic materials, however, this connection cannot
be drawn as directly.

1.5. Response of a crystalline system
In a periodic crystal with Born-von-Karman boundary condition, we can write the Fourier
transform of eq. (1.12) in terms of the reciprocal lattice vectors 𝙂 and the reciprocal unit
cell vectors 𝙦 as (see Appendix B)

𝜑ext
𝙂 (𝙦, 𝜔) = ∑

𝙂′
𝜀𝙂𝙂′(𝙦, 𝙦, 𝜔)𝜑𝙂′(𝙦, 𝜔), (1.36)

where we assume the response function to be lattice periodic 𝜀(𝙧 + 𝙍, 𝙧 ′ + 𝙍) = 𝜀(𝙧 , 𝙧 ).
Equation (1.36) highlights that even if the external potential is varying slowly, i.e. only
Fourier coefficients with 𝙂 = 0 are non-zero, the resulting total potential varies on a small
scale (it contains large 𝙂 components). These deviations from the external potential are
commonly referred to as local field effects, and the sum eq. (1.36) must be used to account
for them.
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Analogously, we can write for the inverse microscopic dielectric function

𝜀−1
𝙂𝙂′(𝙦, 𝜔) = 1 + 𝑣𝙂(𝙦)𝜒R

𝙂𝙂′(𝙦, 𝜔). (1.37)

The dynamical structure factor for the momentum transfer 𝙌mt = 𝙂mt + 𝙦mt takes on the
form

𝑆𝙂mt
(𝙦mt, 𝜔) = − 1

𝜋
𝑣−1

𝙂mt
(𝙦mt)ℑ [𝜀−1

𝙂mt𝙂mt
(𝙦mt, 𝙦mt, 𝜔)] . (1.38)

1.5.1. Macroscopic dielectric response

For a crystalline system the mesocopic averaging mentioned in section 1.4.2 is usually
done over the volume of a unit cell which is equivalent to taking only the 𝙂 = 0 component
of the Fourier transform unequal to zero [10, 11]. Consequently, a macroscopic response
function relates the 𝙂 = 0 components of two quantities. When we assume that the external
potential is also macroscopic, i.e. 𝜑ext

𝙂 (𝙦) = 𝛿𝙂,0𝜑ext(𝙦), we find for the macroscopic
inverse longitudinal dielectric function 𝜀M:

𝜑0(𝙦, 𝜔) = 𝜀−1
00 (𝙦, 𝙦, 𝜔)𝜑ext

0 (𝙦, 𝜔) ≕ 𝜀−1
M (𝙦, 𝜔)𝜑ext

0 (𝙦, 𝜔). (1.39)

The equation above also allows for the definition of themacroscopic longitudinal dielectric
function as

𝜑ext
0 (𝙦, 𝜔) = 1

𝜀−1
M (𝙦, 𝜔)

𝜑0(𝙦, 𝜔) ≕ 𝜀M(𝙦, 𝜔)𝜑0(𝙦, 𝜔). (1.40)

In view of eq. (1.27), we formally extend the definition of 𝜀M to also include the case of
𝙂 ≠ 0

𝜀M(𝙌, 𝜔) = 1
𝜀−1

𝙂𝙂(𝙦, 𝜔)
. (1.41)

Then we can write for the dynamical structure factor

𝑆(𝙌, 𝜔) = − 1
𝜋

𝑣−1
𝙂 (𝙦)ℑ [

1
𝜀M(𝙌, 𝜔)] . (1.42)

For the limit of vanishing momentum transfer the macroscopic dielectric function can be
most conveniently computed by introducing a modified polarizability ̄𝑃 [8]

̄𝑃 = 𝑃 + 𝑃 ̄𝑣 ̄𝑃 , (1.43)

which is related to the polarizability 𝑃 through the long-range-truncated Coulomb potential

̄𝑣𝙂(𝙦) =
{

𝑣𝙂(𝙦) for 𝙂 ≠ 0
0 otherwise

. (1.44)

Using this approach we can take the limit 𝙦 → 0 in eq. (1.16) and write

𝜀𝑀(𝜔) = 1 − lim
𝑞→0

𝑣0(𝙦) ̄𝑃00(𝙦, 𝜔). (1.45)
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2. The many-body problem in solid-state
physics

In this chapter, we summarize some key concepts used in the ab initio quantum mechani-
cal description of a solid as an electronic many-body system. First, the Hamiltonian for a
general 𝑁-electron system is presented in section 2.1, as a starting point for the following
discussions. Then, as an alternative approach to the problem, the main ideas and results
of density-functional theory are presented in section 2.2. In section 2.3 the formalism of
Green’s function theory as a means to describe elementary excitations of the system and
the quasi-particle-picture are introduced. In section 2.3.3 the one-particle Green’s func-
tion, or propagator, and Hedin’s equations are discussed. Subsequently, in section 2.3.4,
the derivation of the Bethe-Salpeter equation (BSE) in the so-called 𝐺𝑊-approximation
for static screening is outlined starting from the two-particle propagator. Lastly, the dia-
grammatic representations of the BSE and the Tamm-Dancoff-approximation are discussed
in section 2.3.5.

2.1. The electronic many-body system
The many electron system we are interested in is described by a Hamiltonian of the form

Ĥ = T̂ + V̂ + Û, (2.1)

where T̂ and V̂ are the summed one-particle operators describing the kinetic and potential
energy of 𝑁 electrons in an external potential, while Û contains the two-electron Coulomb
repulsion terms. In atomic units the operators are given by

T̂ = ∑
𝑖=1

̂t𝑖 = −1
2 ∑

𝑖=1
∇2

𝑖 V̂ = ∑
𝑖=1

𝑣ext(𝙧𝑖), (2.2a)

Û = 1
2 ∑

𝑖≠𝑗
𝑣(𝙧𝑖, 𝙧𝑗) = ∑

𝑖,𝑗

1
|𝙧𝑖 − 𝙧𝑗|

𝑣ext(𝙧 ; {𝙍𝑛}) = −
𝑁nuc

∑
𝑖=1

𝑍𝑖

|𝙧 − 𝙍𝑖|
. (2.2b)

The external potential 𝑣ext is generated by the positively charged atomic nuclei which are
assumed to be in a fixed arrangement. A direct solution of the full 𝑁-electron Schrödinger
equation

ĤΦ ({𝙧𝑖} ; {𝙍𝑖}) = i ∂
∂𝑡

Φ ({𝙧𝑖} ; {𝙍𝑖}) (2.3)

for any realistic system is not feasible due to its high dimensionality1. This problem is lifted
in the framework of density-functional theory.
1A 1 cm3 cube of silicon contains about 1023 electrons
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2.2. Density-functional theory

In the context of density-functional theory, pioneered by the works of Thomas [12] and
Fermi [13] and formalized by Hohenberg and Kohn [14], the focus is shifted away from
the many-electron wave-function onto the electron density as the quantity describing the
system.

2.2.1. Hohenberg-Kohn theorems

The theory is founded on the so called Hohenberg-Kohn theorem that states [14]:

Theorem 1. There is a one-to-one correspondence between the ground state electron density
of a bound system of interacting electrons and the external potential.

Corollary 1.1. Every observable and the wave-function of the system can be expressed as
a functional of the ground state density.

In particular, the sum of the electron-electron Coulomb interaction Û and the kinetic energy
of the electrons T̂

𝐹 [𝑛] = ⟨Φ|T̂ + Û|Φ⟩ (2.4)

is uniquely defined by the ground state density and has the same form for all many-electron
systems of the considered form.

The second theorem of Hohenberg and Kohn, also known as Hohenberg-Kohn minimum
principle, states:

Theorem 2. The total energy is a functional of the electron density with its minimal value,
the ground state energy, at the ground state density

𝐸gs = 𝐸[𝑛gs] = min
𝑛(𝙧 )

𝐸[𝑛(𝙧 )] = min
𝑛(𝙧 ) {∫ 𝑛(𝙧)𝑣ext(𝙧 ) d3𝑟 + 𝐹 [𝑛]} . (2.5)

2.2.2. The Kohn-Sham equations

While in theory every observable of the 𝑁-electron system is a functional of the density,
the explicit form of 𝐹 [𝑛] is not known. In an effort to make the problem more tractable,
Kohn and Sham [15] expressed the universal functional as

𝐹 [𝑛(𝙧 )] = 𝑇0[𝑛(𝙧 )] + 1
2 ∬

𝑛(𝙧1)𝑛(𝙧2)

|𝙧1 − 𝙧2|
d3𝑟1 d3𝑟2 + 𝐸xc[𝑛(𝙧 )], (2.6)

where 𝑇0[𝑛] is the kinetic energy functional of non-interacting electrons, the second sum-
mand is the electrostatic Hartee-energy and 𝐸xc[𝑛] is the exchange-correlation energy func-
tional. The latter encapsulates all quantum-mechanical many-body effects and needs to be
approximated.
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By applying the Hohenberg-Kohn minimum principle Kohn and Sham were able to de-
fine an auxiliary system of non-interacting electrons that leads to the exact same ground-
state density as the fully interacting system, given the exact form of the exchange-correlation
energy functional:

[−1
2

∇2 + 𝑣eff(𝙧 ) − 𝜖𝑖] 𝜙𝑖(𝙧 ) ≕ ĥKS(𝙧 )𝜙𝑖(𝙧 ) = 0, (2.7a)

where
𝑣eff(𝙧 ) = 𝑣ext(𝙧 ) + ∫

𝑛(𝙧2)

|𝙧 − 𝙧2|
d3𝑟2 + 𝑣xc(𝙧 ) (2.7b)

and
𝑣xc(𝙧 ) =

𝛿𝐸xc[𝑛(𝙧 )]
𝛿𝑛(𝙧 ) |𝑛=𝑛gs

. (2.7c)

Equation (2.7c) defines the exchange-correlation potential. The electron density can be
directly calculated using the single-particle orbitals

𝑛(𝙧 ) =
𝑁

∑
𝑖=1

|𝜙𝑖(𝙧 )|, (2.8)

and the total energy reads in terms of the density and the Kohn-Sham eigenvalues

𝐸 =
𝑁

∑
𝑖=1

𝜖𝑖 + 𝐸xc[𝑛(𝙧 )] − ∫ 𝑣xc(𝙧 )𝑛(𝙧 ) d3𝑟 − 1
2 ∫

𝑛(𝙧1)𝑛(𝙧2)

|𝙧1 − 𝙧2|
d3𝑟1 d3𝑟2 . (2.9)

Starting from an assumed form of 𝐸xc[𝑛], equations (2.7), (2.8) and (2.9) need to be solved
self-consistently for the ground-state density.
Remark. The Kohn-Sham eigenvalues and Kohn-Sham orbitals contain a priori no physical
meaning, as they are auxiliary quantities designed to reproduce the ground state electron
density of the real system. In practice, however, they are still used to approximate band
structures and wave functions and often yield reasonable results when compared with ex-
periments and higher order theories.

In principle, all many-body effects of the interacting system are described in the exchange-
correlation energy functional, and consequently the Kohn-Sham system with the corre-
sponding exchange-correlation potential can reproduce the exact ground state density and
energy. Unfortunately, the exact form of the functional is not known and approximations
need to be made. In this work we will exclusively use the local density approximation
(LDA) [15] which assumes the system to locally resemble the homogeneous electron gas.

2.3. Many-body perturbation theory
If one is interested in the excitation properties of a system of interacting electrons it does
not suffice to look at the Kohn-Sham eigenvalues, as they are purely auxiliary quantities.
Instead one has to venture into the realm of many-body perturbation theory (MBPT) within
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the (non-relativistic) second quantization formulation of the many-electron system (for a
review see [8, 16]). In this section, the basic concepts will be outlined following mainly
Refs. [2, 10, 11, 16].

2.3.1. Hamiltonian in second quantization

In MBPT it is necessary to switch to the occupation number representation of the second
quantization formalism. The system described by eq. (2.1) now reads

Ĥ = ∫ �̂� †(𝙧 )ℎ(𝙧 ) �̂�(𝙧 ) d3𝑟 + 1
2 ∬ �̂� †(𝙧 ) �̂� †(𝙧 ′)𝑣(𝙧 , 𝙧 ′) �̂�(𝙧 ′) �̂�(𝙧 ) d3𝑟 d3𝑟′ . (2.10)

The fermionic field operators �̂� †(𝙧 ) and �̂�(𝙧 ) create and destroy an electron at position 𝙧,
respectively, and fulfill the equal-time anti-commutation relations

[�̂�(𝙧 ), �̂�(𝙧 ′)]+ = [�̂� †(𝙧 ), �̂� †(𝙧 ′)]+ = 0 and [�̂�(𝙧 ), �̂� †(𝙧 ′)]+ = 𝛿(𝙧 − 𝙧 ′). (2.11)

Instead of the Schrödinger equation (2.3), the equation of motion of the field operators in
the Heisenberg picture is considered to describe the evolution of the system

i ∂
∂𝑡

�̂�H(𝙧 , 𝑡) = [�̂�H(𝙧 , 𝑡), Ĥ] = [ĥ(𝙧 ) + ∫ 𝑣(𝙧 , 𝙧 ′) �̂� †
H(𝙧 ′, 𝑡) �̂�H(𝙧 ′, 𝑡) d3𝑟′

] �̂�H(𝙧 , 𝑡).

(2.12)
The direct solution of eq. (2.12) is in general not possible so that perturbative methods need
to be employed.

2.3.2. Quasi-particles

The key concept of MBPT is to replace the system of 𝑁 strongly interacting particles with
a system of 𝑁 non- or weakly interacting quasi-particles that describe elementary excita-
tions of the system with respect to some perturbation. When considering (inverse) photo-
emission experiments where electrons are (added) removed from the system, an appropriate
quasi-particle picture would be that of quasi-electrons (quasi-holes). These quasi-particles
closely resemble the real particles, but with properties such as charge, mass or momentum
renormalized by the influence of all the other electrons in the system. On the other hand,
in optical absorption measurements excitations remain charge neutral and can be described
by the creation of electron-hole pairs. These pairs of correlated electrons and holes can
be characterized as a new quasi-particle called exciton. The theoretical description of these
quasi-particle is bases on the 𝑛-particle Green’s functions (or propagators). They give a sys-
tematical approach to the interaction of a few particles with the rest of the fully interacting
system.

2.3.3. One-particle Green’s function and Hedin’s equations

The one-particle Green’s function [5]

𝐺1(𝙧1, 𝑡1; 𝙧2, 𝑡2) = −i ⟨𝑁| ̂𝒯 [�̂�(𝙧1, 𝑡1) �̂� †(𝙧2, 𝑡2)]|𝑁⟩ (2.13)
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can be interpreted as a measure for the probability of finding a particle at position 𝙧 at time
𝑡, if a particle is introduced into the system at position 𝙧 ′ at time 𝑡′. Here, |𝑁⟩ is the Heisen-
berg ground state of the many-body system and ̂𝒯 is Wick’s time-ordering operator. This
Green’s function contains all information about single-particle excitations of the system,
and the expectation values of any single-particle observables can be computed with its help
[5, 17]. Using functional-derivative methods [18–20], the interacting Green’s function 𝐺1
can be formulated in terms of the non-interactingGreen’s function 𝐺0 and the self-energy Σ

𝐺−1
0 (1, 2) = 𝐺−1

1 (1, 2) + Σ(1, 2), (2.14a)

𝐺1(1, 2) = 𝐺0(1, 2) + ∫ 𝐺0(1, 3)Σ(3, 4)𝐺1(4, 2) d(3, 4) , (2.14b)

where 1 ≡ (𝙧1, 𝑡1). 𝐺0 describes the free propagation of a particle in the average electro-
static potential of the system, while exchange and correlation effects are packed into Σ. In
order to get access to the self-energy, Hedin and Lundquist [2, 21] investigated the equation
of motion of 𝐺1(1, 2) for a Hamiltonian that is perturbed by a small local external scalar po-
tential 𝜙 ( ℎ(𝑟) → ℎ(𝑟)+𝜙(𝑟, 𝑡) in eq. (2.10)) and derived the following set of self-consistent
integral equations, commonly referred to as Hedin’s equations:

Σ(1, 2) = i ∫ 𝑊 (1+, 3)𝐺1(1, 4)Γ(4, 2; 3) d(3, 4) (2.15a)

𝑊 (1, 2) = 𝑣(1, 2) + ∫ 𝑊 (1, 3)𝑃 (3, 4)𝑣(4, 2) d(3, 4) (2.15b)

𝑃 (1, 2) = −i ∫ 𝐺1(2, 3)𝐺1(4, 2)Γ(3, 4; 1) d(3, 4) (2.15c)

Γ(1, 2; 3) = 𝛿(1, 2)𝛿(1, 3) + 𝛿Σ(1, 2)
𝛿𝑉 (3)

. (2.15d)

𝑊 denotes the dynamically screened Coulomb interaction, which is related to the bare
Coulomb interaction 𝑣 by the inverse (longitudinal) dielectric function 𝜀−1, according to:

𝑊 (1, 2) = ∫ 𝑣(1, 3)𝜀−1(3, 2) d(3) . (2.16)

The inverse of the dielectric function in eq. (2.16) is defined as the variation of the total
average potential 𝑉 of the system with respect to a scalar potential Φ (see section 1.2),

𝜀−1(1, 2) = 𝛿𝑉 (1)
𝛿Φ(2)

. (2.17)

Dyson’s equation for 𝐺1 (2.14) together with Hedin’s equations (2.15) could be solved self-
consistently starting with Σ = 0. In practice, however, this is computationally not feasible
for realistic systems.
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In order to make the system (2.15) tractable, the vertex function Γ is approximated by
neglecting the variation of the self-energy with respect to the average potential 𝑉. The
resulting system

Σ(1, 2) = i𝑊 (1+, 2)𝐺1(1, 2) (2.18a)

𝑊 (1, 2) = 𝑣(1, 2) + ∫ 𝑊 (1, 3)𝑃 (3, 4)𝑣(4, 2) d(3, 4) (2.18b)

𝑃 (1, 2) = −i𝐺1(1, 2)𝐺1(2, 1) (2.18c)

is named theGW approximation due to the form of the self-energy. To further simplify the
problem, the 𝐺0𝑊0 approximation is often used, where the self-energy is approximated by
one iteration of eq. (2.18) starting from 𝐺0.

The Dyson equation eq. (2.14) can be reformulated in terms of the quasi-particle wave
functions 𝜓 as a Schrödinger-like equation

ĥ(𝙧 )𝜓𝑚(𝙧 ) + ∫ Σ(𝙧 , 𝙧 ′, 𝐸𝑚)𝜓𝑚(𝙧 ′) d3𝑟′ = 𝐸𝑚𝜓𝑚(𝙧 ) (2.19)

with the self energy considered as a non-local, energy-dependent potential [2, 22, 23]. The
Green’s function (𝑇 = 0 K) can be expressed in analogy to the independent-particle prop-
agator using the solutions of eq. (2.19) as

𝐺1(𝙧 , 𝙧 ′, 𝜔) = ∑
𝑚

𝜓𝑚(𝙧 )𝜓∗
𝑚(𝙧 ′)

𝜔 − 𝐸𝑚 + i𝛿 sgn(𝐸𝑚 − 𝐸f)
. (2.20)

2.3.4. Two-particle Green’s function and the Bethe-Salpether equation

To describe the perturbation discussed in chapter 1 in terms of Green’s functions we also
need to introduce the two-particle Green’s function

𝐺2(𝙧1, 𝑡1, 𝙧2, 𝑡2; 𝙧 ′
1 , 𝑡′

1, 𝙧 ′
2 , 𝑡′

2)

= (−i)2 ⟨𝑁| ̂𝒯 [�̂�H(𝙧1, 𝑡1) �̂�H(𝙧2, 𝑡2) �̂� †
H(𝙧 ′

2 , 𝑡′
2) �̂� †

H(𝙧 ′
1 , 𝑡′

1)]|𝑁⟩ , (2.21)

which describes the propagation of two particles through the system. Now, the time-ordered
density correlation function (1.23) can be expressed with 𝐺1 and 𝐺2 by using n̂H(𝑟, 𝑡) =
�̂� †
H(𝑟, 𝑡) �̂�H(𝑟, 𝑡) as

𝜒T(1, 2) = i [𝐺2(1, 2, 1+, 2+) − 𝐺1(1, 1+)𝐺1(2, 2+)] = −i𝐿(1, 2, 1+, 2+), (2.22)

where 𝐿 denotes the two-particle correlation function [24] which is defined by

𝐿(1, 2, 1′, 2′) = 𝐺2(1, 2, 1′, 2′) − 𝐺1(1, 1′)𝐺1(2, 2′). (2.23)
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The equation of motion of 𝐿 is described by the Bethe-Salpeter equation for 𝐿 in the
form of a Dyson’s equation

𝐿(1, 2, 1′, 2′) = 𝐿0(1, 2; 1′, 2′)

+ ∫ 𝐿0(1, 4; 1′, 3)Ξ(3, 5; 4, 6)𝐿(6, 2; 5, 2′) d(3, 4, 5, 6) . (2.24)

Here, 𝐿0 describes the independent propagation of two particles

𝐿0(1, 2; 1′, 2′) = 𝐺1(1, 2′)𝐺1(2, 1′), (2.25)

and the effective two-particle interaction kernel Ξ is given in terms of the variation of the
irreducible self-energy Σ (see 2.3.3) and the Hartree part of the self energy ΣH,

ΣH(3, 4) = −i𝛿(3, 4) ∫ d(5) 𝑣(1, 5)𝐺1(3, 3+) (2.26)

with respect to the one-particle Green’s function

Ξ(3, 5; 4, 6) =
𝛿 (ΣH(3, 4) + Σ(3, 4))

𝛿𝐺1(6, 5)
. (2.27)

In the following, we will focus on the description of electron-hole pairs and exclude
electron-electron or hole-hole pairs by requiring that 𝑡1 = 𝑡′

1 and 𝑡2 = 𝑡′
2. That is, we are only

interested in charge-neutral excitations. In this framework 𝐿0, for example, describes the
independent propagation of an electron and a hole through the system and is only dependent
on one time difference 𝑡2 − 𝑡1 [16].

Choosing the GW-approximation for the self-energy (2.18), the functional-derivative
(2.27) is evaluated to yield:

Ξ(3, 5, 4, 6) = −i𝛿(3, 4)𝛿(5, 6)𝑣(3, 6) + i𝛿(3, 6)𝛿(4, 5)𝑊 (3, 5)

+ i𝐺1(3, 5)𝛿𝑊 (3, 5)
𝛿𝐺1(6, 4)

. (2.28)

The first term in eq. (2.28) describes the repulsive exchange interaction, while the sec-
ond one accounts for the screened electron-hole attraction. The last term is neglected in
practical applications, meaning that no change of the screening due to the excitations is
considered.

To make the Bethe-Salpeter equation computationally more tractable, we approximate
the interaction kernel (2.28) further by assuming that the screening is frequency indepen-
dent, i.e. static, and all interactions are instantaneous

Ξ(3, 5, 4, 6) ≈ −i𝛿(3, 4)𝛿(5, 6)𝑣(𝙧3, 𝙧6)𝛿(𝑡3 − 𝑡6)
+ i𝛿(3, 6)𝛿(4, 5)𝑊 (𝙧3, 𝙧5)𝛿(𝑡3 − 𝑡5). (2.29)

This entails that the Fourier transform of the kernel in this approximation is frequency-
independent, i.e. Ξ(𝜔) = Ξ.

Once the BSE is solved for 𝐿, the density correlation function can be expressed using
eq. (2.22). Form this function one can extract the dielectric response of the system which
accounts for excitonic effects (see chapter 1).
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2.3.5. BSE in diagrams

The integral equation (2.24) can be visualized in terms of Feynman diagrams according to

𝐿

1 2′

1′ 2

=

1 2′

1′ 2

+ Ξ 𝐿

1

1′

3

4

6

5

2′

2

, (2.30)

where we used the “box with four tails” notation of the four-point functions and we denote

the quasi-particle propagator as 𝐺(2, 1) = 1 2 . The tails are not associated with
any propagators but define how to connect propagators to the four-point function. The
approximation for the interaction kernel Ξ (2.29) can be written diagrammatically as

Ξ

3 6

4 5

≈
𝑉3

4

6

5
+ 𝑊

63

54

(2.31)

and the screened Coulomb interaction itself is given by the Dyson equation in terms of the
irreducible polarization 𝑃

= + 𝑃 . (2.32)

In the following, we will approximate 𝑃 as

𝑃 = , (2.33)
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Figure 2.1.: First-order time-orderedGoldstone diagrams corresponding to the interactionsmitigated
by the bare (𝑉 ) and the screened (𝑊 ) Coulomb potential in the BSE (2.30) with the two-particle
interaction kernel (2.31). Time increases from left to right. Diagrams (a) and (b) describe the
resonant-resonant coupling between the e-h pairs (11′) and (22′), where both are associated with
the frequency 𝜔. Diagrams (c) and (d) describe the resonant-anti-resonant coupling, in which the
(22′) pair is associated with the frequency of opposite sign. See also [26].

which is commonly referred to as random phase approximation (RPA) [25].
It is instructive to look at the time-ordered Goldstone versions of the first order interac-

tion processes in eq. (2.30) with the kernel (2.31) as shown in figure 2.1. In the exchange
diagram (a) the incoming electron-hole (e-h) pair (11′) is annihilated at (𝙧3, 𝑡3) and the out-
going e-h pair (22′) is created at (𝙧5, 𝑡3) with the same associated frequency 𝜔. In contrast,
in diagram (c) the incoming resonant e-h pair annihilates with an anti-resonant e-h pair of
opposite frequency. Diagram (b) describes the scattering of the incoming resonant e-h pair
into another resonant e-h pair of the same frequency. Lastly, in diagram (d) the incoming
resonant e-h pair scatters into an anti-resonant e-h pair of opposite frequency.

A common approximation to the BSE is the so-called Tamm-Dancoff approximation,
where no coupling between resonant and anti-resonant e-h pairs is regarded, i.e. diagrams
of the type (c) and (d) are neglected. Within the TDA there is only one electron-hole pair
present at any given time, whereas any number of electron-hole pairs are permitted other-
wise [5].
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3. Solving the Bethe-Salpeter equation

In this chapter we discuss how to bring the BSE into a numerically accessible form. In sec-
tion 3.1 the integral equation (2.24) is written in matrix notation by expanding all func-
tions in terms of a two-particle basis. Then, the formulation of the BSE is specialized for
crystalline systems in section 3.2 and the explicit expressions of the momentum-transfer
dependent matrix elements are derived in section 3.3. Subsequently, in sections 3.4 to 3.6
the connection between the eigen-solutions of an effective two-particle Hamiltonian and
the reducible polarization function is made. Finally, in section 3.7 the computation of the
macroscopic dielectric tensor in the limit of vanishing momentum transfer is discussed.

3.1. Matrix form of the BSE

We start by defining the four-point extension of the time-ordered density-correlation func-
tion eq. (2.22) as

𝜒(1, 2, 1′, 2′) ≔ −i𝐿(1, 2, 1′, 2′), (3.1)

where 𝜒(1, 2) = 𝜒(1, 2, 1, 2). Then, using the approximate (static) interaction kernel (2.29),
the BSE eq. (2.24) can be Fourier transformed in the time difference 𝑡2 − 𝑡1 resulting in

𝜒(𝙧1, 𝙧2, 𝙧 ′
1 , 𝙧 ′

2 , 𝜔) = 𝜒0(𝙧1, 𝙧2, 𝙧 ′
1 , 𝙧 ′

2 , 𝜔)

+ ∫ 𝜒0(𝙧1, 𝙧4, 𝙧 ′
1 , 𝙧3, 𝜔)Ξ(𝙧3, 𝙧5, 𝙧4, 𝙧6)𝜒(𝙧6, 𝙧2, 𝙧5, 𝙧 ′

2 , 𝜔) d3𝑟3 d3𝑟4 d3𝑟5 d3𝑟6 . (3.2)

With the independent quasi-particle approximation of the one-particle Green’s function
eq. (2.20), the Fourier transform of𝜒0 = −i𝐿0 eq. (2.25) takes on the form (see Appendix F)

𝜒0(𝙧1, 𝙧2, 𝙧 ′
1 , 𝙧 ′

2 , 𝜔) = ∑
𝑜,𝑢

𝜓𝑜(𝙧1)𝜓∗
𝑢 (𝙧 ′

1)𝜓∗
𝑜 (𝙧 ′

2)𝜓𝑢(𝙧2)
𝜔 − (𝜀𝑢 − 𝜀𝑜) + i𝛿

+
𝜓𝑢(𝙧1)𝜓∗

𝑜 (𝙧 ′
1)𝜓∗

𝑢 (𝙧 ′
2)𝜓𝑜(𝙧2)

−𝜔 − (𝜀𝑢 − 𝜀𝑜) + i𝛿
. (3.3)

Equation (3.3) suggests the introduction of a two-particle basis Υ𝑗(𝙧 , 𝙧 ′) that is split into
two subspaces according to

Υr
𝛼(𝙧 , 𝙧 ′) = 𝜓𝑜𝛼

(𝙧 )𝜓∗
𝑢𝛼

(𝙧 ′) and Υa
𝛼 (𝙧 , 𝙧 ′) = 𝜓𝑢𝛼

(𝙧 )𝜓∗
𝑜𝛼

(𝙧 ′). (3.4)

The superscripts r and a denote the resonant and anti-resonant subspaces respectively, and
the subscript 𝛼 labels a combination of one unoccupied and one unoccupied state. In other
words, 𝛼 labels the independent (quasi-)particle transitions. Resonat (anti-resonant) refers
here to the part of 𝜒0 that has poles when 𝜔 is positive (negative).
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By restricting the one-particle Hilbert space to the span of a finite number of𝑁o occupied
and 𝑁u unoccupied orbitals, the Bethe-Salpeter equation (3.2) can be written as a matrix
equation in the two-particle basis (3.4):

𝜒𝑖𝑗(𝜔) = 𝜒0𝑖𝑗(𝜔) + ∑
𝑘𝑙

𝜒0𝑖𝑘(𝜔) (𝑉𝑘𝑙 − 𝑊𝑘𝑙)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Ξ𝑘𝑙

𝜒𝑙𝑗(𝜔). (3.5)

Using the basis functions of (3.4), the matrix elements of the kernel are computed according
to the prescription

Ξrr
𝛼𝛼′ = ⨌ Υr∗

𝛼 (𝙧1, 𝙧 ′
1)Ξ(𝙧1, 𝙧2, 𝙧 ′

1 , 𝙧 ′
2)Υr

𝛼′(𝙧 ′
2 , 𝙧2) d3𝑟1 d3𝑟′

1 d3𝑟2 d3𝑟′
2 , (3.6)

and the ra-, ar- and aa-blocks are computed analogously. In this notation, the exchange part
of Ξ is

Ξ𝑣(𝙧1, 𝙧2, 𝙧 ′
1 , 𝙧 ′

2) = 𝛿(𝙧1 − 𝙧 ′
1)𝛿(𝙧2 − 𝙧 ′

2)𝑣(𝙧1, 𝙧2) (3.7)

while the screened Coulomb interaction takes of the form

Ξ𝑤(𝙧1, 𝙧2, 𝙧 ′
1 , 𝙧 ′

2) = −𝛿(𝙧1 − 𝙧 ′
2)𝛿(𝙧 ′

1 − 𝙧2)𝑊 (𝙧1, 𝙧2). (3.8)

The solution of the integral equation (3.2) is thus mapped to the linear algebra problem

𝞆 = [𝜒−1
0 (𝜔) − 𝝣]

−1 . (3.9)

3.2. BSE for crystalline systems
In a crystalline system, 𝜒 follows the periodicity of the lattice

𝜒(𝙧1 + 𝙍, 𝙧2 + 𝙍, 𝙧 ′
1 + 𝙍, 𝙧 ′

2 + 𝙍, 𝜔) = 𝜒(𝙧1, 𝙧2, 𝙧 ′
1 , 𝙧 ′

2 , 𝜔) (3.10)

and can be expressed in terms of a sum of functions defined for each point in the Brillouin
zone [10]

𝜒(𝙧1, 𝙧2, 𝙧 ′
1 , 𝙧 ′

2 , 𝜔) = ∑
𝙦mt∈B.z.

𝜒𝙦mt
(𝙧1, 𝙧2, 𝙧 ′

1 , 𝙧 ′
2 , 𝜔). (3.11)

Since the one-particle wave functions are Bloch functions, also the two-particle basis func-
tions can be chosen to be Bloch-periodic in 𝙦mt. We define the resonant and anti-resonant
basis functions as

Υr
𝛼,𝙦mt

(𝙧 , 𝙧 ′) = 𝜓𝑜𝛼𝙠𝛼+𝙦mt/2(𝙧 )𝜓∗
𝑢𝛼𝙠𝛼−𝙦mt/2

(𝙧 ′) (3.12a)

and
Υa

𝛼,𝙦mt
(𝙧 , 𝙧 ′) = 𝜓𝑢𝛼𝙠𝛼+𝙦mt/2(𝙧 )𝜓∗

𝑜𝛼𝙠𝛼−𝙦mt/2
(𝙧 ′). (3.12b)

It is now possible to solve eq. (3.5) for each 𝙦mt component separately by restricting the
two-particle basis according to eq. (3.12), i.e.

𝞆(𝙦mt, 𝜔) = [𝞆−1
0 (𝙦mt, 𝜔) − 𝝣(𝙦mt)]

−1 . (3.13)

20



In the following we approximate the quasi-particle states 𝜓𝑖,𝙠 with the Kohn-Sham or-
bitals 𝜙𝑖,𝙠. For diamond, Si, Ge, and LiCl this is known to be a good approximation [23].
Changing the enumeration of the 𝙠 points in the definition of the anti-resonant part of the
two-particle basis according to

Υ ̄a
𝛼,𝙦mt

(𝙧 , 𝙧 ′) = 𝜙𝑢𝛼−𝙠𝛼+𝙦mt/2(𝙧 ), 𝜙∗
𝑜𝛼−𝙠𝛼−𝙦mt/2

(𝙧 ′) (3.14)

is useful when considering the symmetry properties of the Bloch states under time-reversal

𝜙𝙠 = 𝜙∗
−𝙠 and 𝜀𝙠 = 𝜀−𝙠 (3.15)

(see Appendix A.3.2). In this way, there is a direct connection between the resonant and
anti-resonant basis functions [26]

Υ ̄a
𝛼,𝙦mt

(𝙧 , 𝙧 ′) = 𝜙𝑢𝛼−𝙠𝛼+𝙦mt/2(𝙧 )𝜙∗
𝑜𝛼−𝙠𝛼−𝙦mt/2

(𝙧 ′)

= 𝜙𝑜𝛼𝙠𝛼+𝙦mt/2(𝙧 ′)𝜙∗
𝑢𝛼𝙠𝛼−𝙦mt/2

(𝙧 ) = Υr
𝛼,𝙦mt

(𝙧 ′, 𝙧 ).
(3.16)

3.3. Matrix elements
In this section, the explicit form of the matrix elements needed for 𝜒(𝙦mt, 𝜔) (3.13) in the
two-particle Bloch basis functions are given. The matrix representation of an operator Ô
has the block structure

𝗢 = (
𝗢rr 𝗢ra

𝗢ar 𝗢aa), (3.17)

where the superscripts corresponds to the subspaces. In the following, we also adapt the
notational convention for matrix elements in terms of the single-particle states

⟨𝑚, 𝑛|Ô|𝑖, 𝑗⟩ = ∬ 𝜙∗
𝑚(𝙧 )𝜙∗

𝑛(𝙧 ′)𝑂(𝙧 , 𝙧 ′)𝜙𝑖(𝙧 )𝜙𝑗(𝙧 ′) d3𝑟 d3𝑟′ . (3.18)

To shorten the notation in the following we write

𝙠+ = 𝙠 + 𝙦mt/2 and 𝙠− = 𝙠 − 𝙦mt/2. (3.19)

3.3.1. Independent-particle polarization function

The matrix elements of 𝜒0 are straightforwardly computed using eq. (3.3) and eq. (3.6).
In the subsequent discussion, we will drop the infinitesimal 𝛿 which will eventually be re-
introduced in the final expression for the dielectric function. It is

𝞆−1
0 (𝙦mt, 𝜔) = − [(

𝗘ip(𝙦mt) 0
0 𝗘ip(−𝙦mt))

− 𝜔(
𝟙 0
0 −𝟙)] (3.20)

with the independent-particle transition energies as matrix elements (note that 𝙠± implicit
depends on 𝙦mt)

𝐸ip
𝛼,𝛼′(𝙦mt) = (𝜀𝑢,𝙠−

− 𝜀𝑜,𝙠+) 𝛿𝛼,𝛼′. (3.21)
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Changing both k-summation variables from 𝙠 to −𝙠 in the anti-resonant part of 𝜒0 and using
the time-reversal symmetry (3.15) allows us to write

∑
𝑜,𝑢,𝙠,𝙠′

𝜓𝑢,𝙠′(𝙧1)𝜓∗
𝑜,𝙠(𝙧 ′

1)𝜓∗
𝑢,𝙠′(𝙧 ′

2)𝜓𝑜,𝙠(𝙧2)

−𝜔 − (𝜀𝑢,𝙠′ − 𝜀𝑜,𝙠) + i𝛿
= ∑

𝑜,𝑢,𝙠,𝙠′

𝜓∗
𝑢,𝙠′(𝙧1)𝜓𝑜,𝙠(𝙧 ′

1)𝜓𝑢,𝙠′(𝙧 ′
2)𝜓∗

𝑜,𝙠(𝙧2)

−𝜔 − (𝜀𝑢,𝙠′ − 𝜀𝑜,𝙠) + i𝛿
(3.22)

from which follows that 𝞆−1
0 can be written in the anti-resonant basis choice of eq. (3.16)

as
𝞆−1

0 (𝙦mt, 𝜔) = − [(
𝗘ip(𝙦mt) 0

0 𝗘ip(𝙦mt))
− 𝜔(

𝟙 0
0 −𝟙)] . (3.23)

Partial occupations

To account for partial occupation numbers of the Kohn-Sham system, we introduce the
diagonal matrix of occupation number difference as

𝗙𝛼,𝛼′(𝙦mt) = (𝑓𝑜,𝙠+
− 𝑓𝑢,𝙠−) 𝛿𝛼,𝛼′ (3.24)

and rewrite eq. (3.23) in view of eq. (F.5) in a symmetric fashion (omitting 𝙦mt)

𝞆−1
0 (𝙦mt, 𝜔) = −

[(
𝗙− 1

2 𝗘ip𝗙− 1
2 0

0 𝗙− 1
2 𝗘ip𝗙− 1

2 )
− 𝜔(

𝟙 0
0 −𝟙)]

. (3.25)

It is apparent, that this is an approximate approach and only possible as long as there is no
occupation inversion.

3.3.2. Exchange interaction matrix elements

The calculation of the matrix elements of the Coulomb potential using eqs. (3.6) and (3.7)
reduces to

𝑉𝑖𝑗(𝙦mt) = ∬ Υ∗
𝑖,𝙦mt

(𝙧 , 𝙧 )𝑣(𝙧 , 𝙧 ′)Υ𝑗,𝙦mt
(𝙧 ′, 𝙧 ′) d3𝑟 d3𝑟′ . (3.26)

The Coulomb potential is symmetrical in 𝙧 and 𝙧 ′ and obeys the lattice periodicity, i.e.

𝑣(𝙧 , 𝙧 ′) = 𝑣(𝙧 ′, 𝙧 ) = 𝑣(|𝙧 ′ − 𝙧|) and 𝑣(𝙧 + 𝙍, 𝙧 ′ + 𝙍) = 𝑣(𝙧 , 𝙧 ′). (3.27)

Choosing the basis according to eq. (3.12), the elements of the four blocks are computed
according to

𝑉 rr
𝛼𝛼′(𝙦mt) = ⟨𝑜𝙠+, 𝑢′𝙠′

−|𝑣(𝙧 , 𝙧 ′)|𝑢𝙠−, 𝑜′𝙠′
+⟩

(3.27)
= ⟨𝑢′𝙠′

−, 𝑜𝙠+|𝑣(𝙧 , 𝙧 ′)|𝑜′𝙠′
+, 𝑢𝙠−⟩

(3.28a)

𝑉 aa
𝛼𝛼′(𝙦mt) = ⟨𝑢𝙠+, 𝑜′𝙠′

−|𝑣(𝙧 , 𝙧 ′)|𝑜𝙠−, 𝑢′𝙠′
+⟩ (3.28b)

𝑉 ra
𝛼𝛼′(𝙦mt) = ⟨𝑜𝙠+, 𝑜′𝙠′

−|𝑣(𝙧 , 𝙧 ′)|𝑢𝙠−, 𝑢′𝙠′
+⟩ (3.28c)
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𝑉 ar
𝛼𝛼′(𝙦mt) = ⟨𝑢𝙠+, 𝑢′𝙠′

−|𝑣(𝙧 , 𝙧 ′)|𝑜𝙠−, 𝑜′𝙠′
+⟩ . (3.28d)

The rr-block elements correspond to the diagram 2.1.a, while the ra-block elements are
depicted in the diagram 2.1.c. These four blocks become all equal when the basis functions
of eq. (3.16) are used instead and the time-reversal symmetry is employed. This follows
directly from eq. (3.16) and eq. (3.26). Consequently, only the resonant-resonant block of
the exchange interaction matrix needs to be computed.

For further calculations, it is useful to use the lattice Fourier representation of the Coulomb
potential 𝑣

𝑣(𝙧 , 𝙧 ′) = 1
𝑉 ∑

𝙂
∑

𝙦∈B.z

4𝜋
|𝙂 + 𝙦|

ei(𝙂+𝙦)(𝙧−𝙧 ′) (3.29)

and the plane-wave matrix elements 𝑀 (see appendix D)

⟨𝑓𝙠𝑓|e−i(𝙂+𝙦)𝙧|𝑖𝙠𝑖⟩ = 𝛿⌊𝙠𝑓−𝙠𝑖+𝙦⌋1st BZ,0 𝑀𝑓𝑖𝙠𝑓
(𝙂, 𝙦), (3.30)

where the Kronecker-delta ensures the conservation of crystal momentum. Then, thematrix
elements (3.28a) take on the form

𝑉 rr
𝛼𝛼′(𝙦mt) = 1

𝑉 ∑
𝙂

∑
𝙦

𝑣(𝙂, 𝙦)

× ⟨𝑢𝙠−|e−i(𝙂+𝙦)𝙧|𝑜𝙠+⟩
∗

⟨𝑢′𝙠′
−|e−i(𝙂+𝙦)𝙧 ′

|𝑜′𝙠′
+⟩

= 1
𝑉 ∑

𝙂
𝑣(𝙂, 𝙦mt)𝑀∗

𝑢𝑜𝙠−
(𝙂, 𝙦mt)𝑀𝑢′𝑜′𝙠′−

(𝙂, 𝙦mt). (3.31)

3.3.3. Screened Coulomb interaction

The matrix elements of the screened Coulomb interaction are computed with

𝑊𝑖𝑗(𝙦mt) = ∬ Υ∗
𝑖,𝙦mt

(𝙧 , 𝙧 ′)𝑊 (𝙧 , 𝙧 ′)Υ𝑗,𝙦mt
(𝙧 , 𝙧 ′) d3𝑟 d3𝑟′ , (3.32)

where 𝑊 is the statically screened Coulomb potential [see (2.16) and (2.28)]

𝑊 (𝙧 , 𝙧 ′) = ∫ 𝑣(𝙧 , 𝙧 ″)𝜀−1(𝙧 ″, 𝙧 ′) d3𝑟″ . (3.33)

For a crystalline system, we assume that 𝑊 is real-valued and that

𝑊 (𝙧 , 𝙧 ′) = 𝑊 (𝙧 ′, 𝙧 ) and 𝑊 (𝙧 + 𝙍, 𝙧 ′ + 𝙍) = 𝑊 (𝙧 , 𝙧 ′) (3.34)

hold. Then, in the basis (3.12), the four blocks are given by

𝑊 rr
𝛼𝛼′(𝙦mt) = ⟨𝑜𝙠+, 𝑢′𝙠′

−|𝑊 (𝙧 , 𝙧 ′)|𝑜′𝙠′
+, 𝑢𝙠−⟩

(3.34)
= ⟨𝑢′𝙠′

−, 𝑜𝙠+|𝑊 (𝙧 , 𝙧 ′)|𝑢𝙠−, 𝑜′𝙠′
+⟩

(3.35a)
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𝑊 aa
𝛼𝛼′(𝙦mt) = ⟨𝑢𝙠+, 𝑜′𝙠′

−|𝑊 (𝙧 , 𝙧 ′)|𝑢′𝙠′
+, 𝑜𝙠−⟩ (3.35b)

𝑊 ra
𝛼𝛼′(𝙦mt) = ⟨𝑜𝙠+, 𝑜′𝙠′

−|𝑊 (𝙧 , 𝙧 ′)|𝑢′𝙠′
+, 𝑢𝙠−⟩ (3.35c)

𝑊 ar
𝛼𝛼′(𝙦mt) = ⟨𝑢𝙠+, 𝑢′𝙠′

−|𝑊 (𝙧 , 𝙧 ′)|𝑜′𝙠′
+, 𝑜𝙠−⟩ . (3.35d)

For the case of zero-momentum transfer, 𝙦mt = 0, these blocks are related according to

𝗪rr = (𝗪rr)
† = (𝗪aa)

∗ and 𝗪ra = (𝗪ra)
T = (𝗪ar)

∗ . (3.36)

For finite momentum transfer these relations do not hold anymore and four distinct blocks
are left.

Again, this can be remedied by switching to the basis defined in eq. (3.16) and using the
time-reversal symmetry. From eqs. (3.16), (3.32) and (3.34) it follows directly that there
are only two distinct blocks, because

𝗪rr = 𝗪 ̄a ̄a = (𝗪rr)
† and 𝗪r ̄a = 𝗪 ̄ar = (𝗪r ̄a)

† . (3.37)

This result also holds for finite momentum transfer. In terms of the single particle states the
elements of 𝗪r ̄a are calculated according to

𝑊 r ̄a
𝛼𝛼′(𝙦mt) = ∬ Υr∗

𝛼 (𝙧 , 𝙧 ′)𝑊 (𝙧 , 𝙧 ′)Υr
𝛼′(𝙧 ′, 𝙧 )

= ∬ 𝜙∗
𝑜𝙠+

(𝙧 )𝜙𝑢𝙠−
(𝙧 ′)𝑊 (𝙧 , 𝙧 ′)𝜙𝑜′𝙠′

+
(𝙧 ′)𝜙∗

𝑢′𝙠−
(𝙧 ) d3𝑟 d3𝑟′

= ∬ 𝜙∗
𝑜𝙠+

(𝙧 )𝜙𝑜′𝙠′
+
(𝙧 ′)𝑊 (𝙧 , 𝙧 ′)𝜙∗

𝑢′𝙠−
(𝙧 )𝜙𝑢𝙠−

(𝙧 ′) d3𝑟 d3𝑟′

≔ ⟨𝑜𝙠+, (𝑜′𝙠′
+)∗|𝑊 (𝙧 , 𝙧 ′)|(𝑢′𝙠′

−)∗, 𝑢𝙠−⟩
(3.34)

= ⟨(𝑜′𝙠′
+)∗, 𝑜𝙠+|𝑊 (𝙧 , 𝙧 ′)|𝑢𝙠−, (𝑢′𝙠′

−)∗⟩ .

(3.38)

As for the exchange interaction, we use the lattice Fourier representation of 𝑊 (𝙧 , 𝙧 ′).
Plugging into eq. (3.33) the Fourier representations of the Coulomb potential and of the
inverse dielectric function and integrating over the doubly-primed coordinates yields

𝑊 (𝙧 , 𝙧 ′) = 1
𝑉 ∑

𝙂𝙂′
∑

𝙦∈B.z
ei(𝙂+𝙦)𝙧 𝑊𝙂,𝙂′(𝙦) e−i(𝙂′+𝙦)𝙧 ′

, (3.39)

with the coefficients

𝑊𝙂,𝙂′(𝙦) = 4𝜋
|𝙂 + 𝙦|2 𝜀−1

𝙂𝙂′(𝙦, 𝜔 = 0). (3.40)

The appearance of 𝜀, which is our target quantity, in the setup of the screened interaction
signals that, in theory, the BSE needs to be solved self-consistently starting from some
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approximation to 𝜀. In practice, however, the microscopic dielectric matrix in the indepen-
dent particle approximation 𝜀0

𝙂𝙂′(𝙦, 𝜔 = 0) is used for a one-shot BSE calculation. For
the construction of 𝜀0 the retarded polarizability (see section 1.2) 𝑃 is calculated for the
Kohn-Sham system and the exchange-correlation kernel is neglected (see appendix E).

The resonant-resonant-block of 𝑊 eq. (3.35a) can then be stated in terms of the plane-
wave matrix elements (3.30) as

𝑊 rr
𝛼𝛼′(𝙦mt) = 1

𝑉 ∑
𝙂𝙂′

∑
𝙦

𝑊𝙂𝙂′(𝙦) ⟨𝑜′𝙠′
+|e−i(𝙂+𝙦)𝙧|𝑜𝙠+⟩

∗ ⟨𝑢′𝙠′
−|e−i(𝙂′+𝙦)𝙧 ′

|𝑢𝙠−⟩

= 1
𝑉 ∑

𝙂𝙂′
𝑊𝙂𝙂′(𝙠 − 𝙠′)𝑀∗

𝑜′𝑜𝙠′
+
(𝙂, 𝙠 − 𝙠′)𝑀𝑢′𝑢𝙠′−

(𝙂′, 𝙠 − 𝙠′)

(3.34)
= 1

𝑉 ∑
𝙂𝙂′

𝑊𝙂𝙂′(𝙠′ − 𝙠)𝑀∗
𝑢𝑢′𝙠−

(𝙂, 𝙠′ − 𝙠)𝑀𝑜𝑜′𝙠+
(𝙂′, 𝙠′ − 𝙠),

(3.41)

while the coupling block eq. (3.38) takes on the form of

𝑊 r ̄a
𝛼𝛼′(𝙦mt) = 1

𝑉 ∑
𝙂𝙂′

∑
𝙦

𝑊𝙂𝙂′(𝙦) ⟨𝑢𝙠−|e−i(𝙂+𝙦)𝙧|(𝑜′𝙠′
+)∗⟩

∗
⟨𝑜𝙠+|e−i(𝙂′+𝙦)𝙧 ′

|(𝑢′𝙠′
−)∗⟩

= 1
𝑉 ∑

𝙂𝙂′
𝑊𝙂𝙂′(−𝙠′ − 𝙠)𝑁∗

𝑢𝑜′𝙠−
(𝙂, −𝙠′ − 𝙠)𝑁𝑜𝑢′𝙠+

(𝙂′, −𝙠′ − 𝙠),

(3.42)

where we used the symmetry again and introduced the modified plane wave matrix ele-
ments 𝑁

⟨𝑓𝙠𝑓|e−i(𝙂+𝙦)𝙧|(𝑖𝙠𝑖)∗⟩ ≕ 𝛿⌊𝙠𝑓+𝙠𝑖+𝙦⌋1st BZ,0 𝑁𝑓𝑖𝙠𝑓
(𝙂, 𝙦). (3.43)

They are related to the plane-wave matix elments 𝑀 due to the time-reversal symmetry

⟨𝑓𝙠𝑓|e−i(𝙂+𝙦)𝙧|(𝑖𝙠𝑖)∗⟩ = ⟨𝑓𝙠𝑓|e−i(𝙂+𝙦)𝙧|𝑖 − 𝙠𝑖⟩ . (3.44)

The advantage of calculating the 𝑁s directly, is that we do not need to calculated the |−𝙠𝑖⟩
eigenstates and that we fix the phase between |−𝙠⟩ and (|𝙠⟩)∗ implicitly to 1.

3.4. BSE as an eigenvalue problem
With the results of 3.3 we can write eq. (3.13) as

𝞆(𝙦mt, 𝜔) = −𝗙
1
2 (𝙦mt) [𝗛e(𝙦mt) − 𝜔𝝙]

−1 𝗙
1
2 (𝙦mt), (3.45)

where we introduce the effective two-particle Hamiltonian 𝗛e,

𝝙 = (
𝟙 0
0 −𝟙) and redefine 𝗙

1
2 =

(
𝗙

1
2 0

0 𝗙
1
2 )

. (3.46)
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Using time-reversal symmetry as discussed above, the Hamiltonian is hermitian and takes
on the form

𝗛e(𝙦mt) = 𝗙
1
2 (𝙦mt)(

𝗔(𝙦mt) 𝗕(𝙦mt)
𝗕(𝙦mt) 𝗔(𝙦mt))

𝗙
1
2 (𝙦mt). (3.47)

The diagonal block is given by

𝗔(𝙦mt) = 𝗘ip(𝙦mt) + 2𝛾x𝗩rr(𝙦mt) − 𝛾c𝗪rr(𝙦mt), (3.48)

and the coupling block by

𝗕(𝙦mt) = 2𝛾x𝗩rr(𝙦mt) − 𝛾c𝗪r ̄a(𝙦mt). (3.49)

Here, we introduce the factors 𝛾𝑥 and 𝛾c which allow to account for the spin degree of
freedom, as discussed in Ref. [10]. Spin-singlet excitations are obtained by setting 𝛾x = 1
and 𝛾c = 1, and spin-triplet excitations are calculatedwith 𝛾x = 0 and 𝛾c = 1. This treatment
is allowed as long as the spin-up and spin-down components of the orbitals are considered
to be identical.

The resolvent (3.45) can be found using the solutions of the generalized eigenvalue prob-
lem (dropping the 𝙦mt for brevity)

𝗛e
(

𝙓𝜆
𝙔𝜆) = 𝐸𝜆𝝙(

𝙓𝜆
𝙔𝜆), (3.50)

according to [27]

[𝗛e − 𝜔𝝙]
−1 = ∑

𝜆 [
1

𝐸𝜆 − 𝜔(
𝙓𝜆
𝙔𝜆)(

𝙓𝜆
𝙔𝜆)

†
+ 1

𝐸𝜆 + 𝜔(
𝙔𝜆
𝙓𝜆)(

𝙔𝜆
𝙓𝜆)

†

]
. (3.51)

3.4.1. Squared eigenvalue problem

The generalized eigenvalue problem eq. (3.50) can be mapped, following [26, 27], onto an
auxiliary “squared” EVP of half its size, given by

𝗦 = (𝗔 − 𝗕)
1
2 (𝗔 + 𝗕) (𝗔 − 𝗕)

1
2 (3.52a)

and
𝗦𝙕𝜆 = 𝑊𝜆𝙕𝜆. (3.52b)

As long as 𝗔 − 𝗕 and 𝗔 + 𝗕 are positive definite, the solutions of eq. (3.50) are exactly
given by

𝐸𝜆 = √𝑊𝜆, (3.53a)

(𝙓𝜆 + 𝙔𝜆) = (𝗔 − 𝗕)
1
2

1
√𝐸𝜆

𝙕𝜆, (3.53b)

and
(𝙓𝜆 − 𝙔𝜆) = (𝗔 − 𝗕)

1
2 √𝐸𝜆𝙕𝜆. (3.53c)
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Using the shorthand notation
𝗖 = (𝗔 − 𝗕)

1
2 (3.54)

and the scaling factors
𝐸±

𝜆 = 1
√𝐸𝜆

± √𝐸𝜆, (3.55)

we can write

(
𝙓𝜆
𝙔𝜆) = 1

2(
𝗖𝐸+

𝜆 𝙕𝜆
𝗖𝐸−

𝜆 𝙕𝜆). (3.56)

3.5. Density correlation function
The time-ordered density correlation function 𝜒(𝙧 , 𝙧 ′, 𝜔) can now be calculated using the
matrix elements 𝜒𝑖𝑗 and the basis functions according to

𝜒(𝙧 , 𝙧 ′, 𝜔) = 𝜒(𝙧 , 𝙧 ′, 𝙧 , 𝙧 ′, 𝜔) = ∑
𝑖𝑗

Υ𝑖(𝙧 , 𝙧 )𝜒𝑖𝑗(𝜔)Υ∗
𝑗 (𝙧 ′, 𝙧 ′). (3.57)

A subsequent Fourier transform yields the form (1.37)

𝜒𝙂𝙂′(𝙦mt, 𝜔) = 1
𝑉 ∬ e−i(𝙂+𝙦mt)𝙧𝜒(𝙧 , 𝙧 ′, 𝜔)ei(𝙂′+𝙦mt)𝙧 ′

d3𝑟 d3𝑟′

= 1
𝑉 ∑

𝑖𝑗
(∫ Υ𝑖(𝙧 , 𝙧 )e−i(𝙂+𝙦mt)𝙧 d3𝑟) 𝜒𝑖𝑗(𝜔) (∫ Υ𝑗(𝙧 ′, 𝙧 ′)e−i(𝙂′+𝙦mt)𝙧 ′

d3𝑟′
)

∗

= 1
𝑉 ∑

𝑖𝑗
𝑀𝑖(𝙂, 𝙦mt)𝜒𝑖𝑗(𝜔)𝑀∗

𝑗 (𝙂′, 𝙦mt).

(3.58)

Here, the plane-wave matrix elements 𝑀 ensure that only basis functions with the Bloch
periodicity 𝙦mt are needed. For the resonant basis functions, the associated plane-wave
elements are

𝑀 r
𝛼(𝙂, 𝙦mt) = ∫ Υr

𝛼,𝙦(𝙧 , 𝙧 )e−i(𝙂+𝙦mt)𝙧 d3𝑟 = 𝛿𝙦mt,𝙦𝑀𝑢𝑜𝙠−
(𝙂, 𝙦mt) (3.59)

that are equal to the anti-resonant ones when the time-reversal symmetry is used. In view
of eq. (3.45) we also absorb the occupation factors into the projecting plane wave elements

�̃� (𝙂, 𝙦mt) = 𝗙
1
2 𝙈 r(𝙂, 𝙦mt) (3.60)

so that
𝜒𝙂𝙂′(𝙦mt, 𝜔) = − 1

𝑉 ∑
𝑖𝑗

�̃�𝑖(𝙂, 𝙦mt) [𝗛e − 𝜔𝝙]
−1
𝑖𝑗 �̃�∗

𝑗 (𝙂′, 𝙦mt). (3.61)

Combining the expressions of eq. (3.58) and of the matrix 𝞆 in terms of the eigenvectors
(3.51) yields

𝜒T
𝙂𝙂′(𝙦mt, 𝜔) = ∑

𝜆
(

1
𝜔 − 𝐸𝜆 + i𝛿

+ 1
−𝜔 − 𝐸𝜆 + i𝛿) 𝑡∗

𝜆(𝙂, 𝙦mt)𝑡𝜆(𝙂′, 𝙦mt), (3.62)
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where we have introduced the transition coefficients 𝑡𝜆

𝑡𝜆(𝙂, 𝙦mt) = (𝙓𝜆 + 𝙔𝜆)
† �̃� r∗(𝙂, 𝙦mt) =

[
𝗖 1

√𝐸𝜆
𝙕𝜆]

†

�̃� r∗(𝙂, 𝙦mt). (3.63)

They constitute a sum of weighted plane wave transitionmatrix elements, where the weights
are given by the corresponding BSE eigenvectors. In order to go over to the retarded density
correlation function we need to replace i𝛿 by −i𝛿 in the second denominator of eq. (3.62)
[16], leading to

𝜒R
𝙂𝙂′(𝙦mt, 𝜔) = ∑

𝜆
(

1
𝜔 − 𝐸𝜆 + i𝛿

+ 1
−𝜔 − 𝐸𝜆 − i𝛿) 𝑡∗

𝜆(𝙂, 𝙦mt)𝑡𝜆(𝙂′, 𝙦mt). (3.64)

Thus, the macroscopic dielectric function defined in eq. (1.41) can be expressed in terms
of 𝜒R using eq. (1.37) as

𝜀M(𝙌mt, 𝜔) =
[

1 + 𝑣𝙂mt
(𝙦mt) ∑

𝜆
(

1
𝜔 − 𝐸𝜆 + i𝛿

+ 1
−𝜔 − 𝐸𝜆 − i𝛿) |𝑡𝜆(𝙂mt, 𝙦mt)|

2

]

−1

.

(3.65)
The square moduli of the transition coefficients 𝑡𝜆 are also referred to as the oscillator
strengths.

3.6. The Tamm-Dancoff approximation
As already discussed in 2.3.5, a common approximation to the BSE is to zero the coupling
block between the resonant and anti-resonant subspace eq. (3.47). Doing so, one is left with
two decoupled eigenvalue problems for the resonant and the anti-resonant subspace, which
are identical when the time-reversal symmetry is used. In this case, only the solutions of

𝗛e, TDA = 𝗙
1
2 𝗔(𝙦mt)𝗙

1
2 𝙓𝜆 = 𝐸𝜆𝙓𝜆 (3.66)

enter the expression for the transition coefficients 𝑡𝜆 (3.63),

𝑡TDA𝜆 (𝙂mt, 𝙦mt) = 𝙓 †
𝜆 �̃� r∗(𝙂mt, 𝙦mt). (3.67)

In [26] it is warned against the use of eq. (3.65) with the TDA, and it is suggested to use
the extension of the scheme discussed in section 1.5.1 to finite momentum transfer. This is
done by setting the corresponding 𝙂mt component of of the bare Coulomb potential to zero
in the BSE setup and calculate the dielectric function according to

𝜀TDAM (𝙌mt, 𝜔) = 1 − 𝑣𝙂mt
(𝙦mt) ∑

𝜆
(

1
𝜔 − 𝐸𝜆 + i𝛿

+ 1
−𝜔 − 𝐸𝜆 − i𝛿) |𝑡TDA𝜆 (𝙂mt, 𝙦mt)|

2.

(3.68)
In the calculations of the current work it was confirmed, that this procedure indeed yields
significantly more accurate results when the TDA results are compared to the non-TDA
calculations and experimental data.
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3.7. Optical limit

For excitations with light in the optical range, i.e. 400 nm−700 nm, the momentum transfer
to the electron is negligible. For example, a photon with a wave-length of 400 nm carries
a momentum of ∼ 1 × 10−3 in atomic units. Thus, we will investigate the limit of 𝙦 → 0
in the following. As discussed in section 1.5.1, to treat this limit it is useful to compute the
modified polarizability ̄𝑃 instead of the susceptibility 𝜒. In the context of the BSE, this
just amounts to replace the full Coulomb potential in the exchange term, eq. (3.26), with
the long-range-truncated one eq. (1.44) [8]. Equation (3.64) then becomes

̄𝑃R
𝙂𝙂′(𝙦mt, 𝜔) = ∑

𝜆
(

1
𝜔 − 𝐸𝜆 + i𝛿

+ 1
−𝜔 − 𝐸𝜆 − i𝛿) 𝑡∗

𝜆(𝙂, 𝙦mt)𝑡𝜆(𝙂′, 𝙦mt). (3.69)

In order to take the limit 𝙂 = 0, 𝙂′ = 0, and 𝙦mt → 0, we first approximate the plane-wave
matrix elements by the dipole matrix elements 𝐷 (see D.2)

𝑀 r
𝛼(0, 𝙦)

𝑞≪1
= i ∑

𝑗
𝐷r

𝛼,𝑗𝑞𝑗, (3.70)

where we define the resonant dipole matrix elements in terms of the momentum operator
as

𝐷r
𝛼,𝑗 = i

⟨𝑢𝙠| ̂𝑝𝑗|𝑜𝙠⟩
𝜖𝑢𝙠 − 𝜖𝑜𝙠

. (3.71)

Inserting eq. (3.70) into eq. (3.63) yields for the transition coefficients

𝑡𝜆(0, 𝙦) = −i (𝙓𝜆 + 𝙔𝜆)
† 𝗙

1
2 𝗗r* ̂𝙦

|𝙦|
≕ −i (𝙓𝜆 + 𝙔𝜆)

† �̃�r* ̂𝙦
|𝙦|

. (3.72)

where ̂𝙦 is the unit vector along the direction of 𝙦, and we have included the occupation
factors into 𝗗. This allows us to cancel the 1/|𝙦|2 factor of the Coulomb potential, and we
write

𝜀M(𝜔) = 1 − lim
𝑞→0

4𝜋
𝑞2

̄𝑃0,0(𝙦, 𝜔)

= 1 − 4𝜋 ∑
𝑖,𝑗

̂𝑞𝑖 (∑
𝜆

(
1

𝜔 − 𝐸𝜆 + i𝛿
+ 1

−𝜔 − 𝐸𝜆 − i𝛿) 𝑡∗
𝜆,𝑖𝑡𝜆,𝑗)

̂𝑞𝑗,
(3.73)

where
𝑡𝜆,𝑖 = −i ∑

𝛼
(𝙓𝜆 + 𝙔𝜆)

†
𝛼 �̃�r∗

𝛼,𝑖 (3.74)

define the transition coefficients for each Cartesian direction. From this expression we can
recover the form of the (macroscopic) transversal dielectric matrix eq. (1.30)

𝜀𝑖𝑗
M(𝜔) = 𝛿𝑖𝑗 − 4𝜋 ∑

𝜆
(

1
𝜔 − 𝐸𝜆 + i𝛿

+ 1
−𝜔 − 𝐸𝜆 − i𝛿) 𝑡∗

𝜆,𝑖𝑡𝜆,𝑗. (3.75)
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As noted in section 1.4, we are mainly interested in the imaginary part of 𝜀 which is given
by a sum of scaled positive and negative Lorentzian functions of width 𝛿 centered at the
positive and negative BSE eigen-energies, respectively. The roots of the real part, on the
other hand, are also useful to interpret the spectrum in terms of the classical Drude-Lorentz
model. They can be used to determine the positions of plasmoic excitations [28].

ℑ [𝜀𝑖𝑖
M(𝜔)] = ∑

𝜆
4𝜋2|𝑡𝜆,𝑖|

2
(

1
𝜋𝛿

𝛿2

(𝜔 − 𝐸𝜆)2 + 𝛿2 − 1
𝜋𝛿

𝛿2

(𝜔 + 𝐸𝜆)2 + 𝛿2 ) , (3.76a)

ℜ [𝜀𝑖𝑖
M(𝜔)] = 1 − ∑

𝜆
4𝜋2|𝑡𝜆,𝑖|

2
(

1
𝜋

𝜔 − 𝐸𝜆

(𝜔 − 𝐸𝜆)2 + 𝛿2 − 1
𝜋

𝜔 + 𝐸𝜆

(𝜔 + 𝐸𝜆)2 + 𝛿2 ) . (3.76b)

The scaling factors are determined by the oscillator strengths.
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A. Bloch states

This appendix summarizes the well-known results of Bloch’s theory of electrons in a peri-
odic potential in appendices A.1 to A.3. In particular, the effect of the time reversal sym-
metry of the underlying Hamiltonian is discussed in appendix A.3.2.

A.1. Crystal lattices

We consider a solid as an infinite periodic assembly of ions. The crystalline structure is
defined by the real space lattice vectors {𝙍} that are spanned by all integer combinations of
the corresponding real space basis vectors {𝙖𝑖}. The volume spanned by the basis vectors
is the volume of the unit cell denoted as Ω. An associated basis in reciprocal space {𝙗𝑖}
is defined by

𝙖𝑖 ⋅ 𝙗𝑗 = 2𝜋𝛿𝑖,𝑗. (A.1)

Integer combinations of the reciprocal basis vectors define the reciprocal lattice vectors {𝙂}.
Any point in reciprocal space can then be expressed as 𝙠 = 𝙦 +𝙂, where 𝙦 is a vector within
the reciprocal unit cell.

A.2. Electron in a perfect crystal

The common way to approach the quantum-mechanical description of a solid is to first
consider one electron in a potential which is periodic with respect to translations along the
lattice vectors {𝙍}

𝑈(𝙧 + 𝙍) = 𝑈(𝙧 ). (A.2)

The resulting Schrödinger-equation (neglecting spin) becomes

Ĥ𝜙(𝙧 ) = [−1
2

∇2 + 𝑈(𝙧 )] 𝜙(𝙧 ) = 𝜀𝜙(𝙧 ). (A.3)

Then, Bloch’s theorem states that the eigenstates of eq. (A.3) are of the form

𝜙𝑛𝙠(𝙧 ) = ei𝙠𝙧𝑢𝑛𝙠(𝙧 ), (A.4)

where 𝑢𝑛𝙠(𝙧 ) = 𝑢𝑛𝙠(𝙧 + 𝙍) has the same periodicity as the potential [29]. Equation (A.4)
define the so-called Bloch states, they are labeled by a, a priori, continuous wave-vector 𝙠
and a discrete quantum index 𝑛.
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A.2.1. Born-von Karman boundary condition

Instead of the infinite crystal, one usually defines a finite, but large volume commensu-
rate with the primitive cell of the underlying Bravais lattice and considers the boundary
condition

𝜙(𝙧 + 𝑁𝑖𝙖𝑖) = 𝜙(𝙧 ) for 𝑖 = 1, 2, 3. (A.5)

This is known as the Born-von-Karman boundary condition and

𝑉 = 𝑁1𝑁2𝑁3Ω, 𝑁𝑖 ∈ ℤ (A.6)

is the Born-von-Karman volume. Applying this condition restricts the continuous 𝙠 to a
discrete set defined by

𝙠 =
3

∑
𝑖=1

𝑚𝑖
𝑁𝑖

𝙗𝑖 for 𝑚𝑖 ∈ ℤ. (A.7)

In the following we will denote only the fractional part of eq. (A.7), i.e. the part within the
reciprocal unit cell, with 𝙠 and the integer part is described by a reciprocal lattice vector 𝙂.

Using the BKB and the Bloch ansatz, the Schrödinger equation can be restated for each
k-vector in the reciprocal unit cell in terms of the periodic part alone

Ĥ𝙠𝑢𝙠(𝙧 ) = ((−𝑖∇ + 𝙠)2 + 𝑈(𝙧 )) 𝑢𝙠(𝙧 ) = 𝜀𝙠𝑢𝙠(𝙧 ). (A.8)

A.3. Properties of a Bloch wave

A.3.1. General properties

In the following we state the properties of a Bloch wave in a system with BKB conditions
with respect to translations in 𝙧 and 𝙠 (see chap. 8 of ref. [29]). The Bloch functions satisfy

𝜙𝑛𝙠(𝙧 + 𝙍) = ei𝙠𝙍𝜙𝑛𝙠(𝙧 ) and 𝜙𝑛𝙠+𝙂(𝙧 ) = 𝜙𝑛𝙠(𝙧 ), (A.9)

while the periodic part behaves as

𝑢𝑛𝙠(𝙧 + 𝙍) = 𝑢𝑛𝙠(𝙧 ) and 𝑢𝑛𝙠+𝙂(𝙧 ) = e−i𝙂𝙧𝑢𝑛𝙠(𝙧 ). (A.10)

The eigenvalues do not change for different 𝙂-components

𝜖𝑛𝙠+𝙂 = 𝜖𝑛𝙠. (A.11)

Any function 𝑓(𝙧 ) can be used to construct a corresponding Bloch function by

𝑓Bloch
𝙠 (𝙧 ) = ∑

𝙍
ei𝙠𝙍𝑓(𝙧 − 𝙍). (A.12)
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A.3.2. Time reversal symmetry

The Hamiltonian eq. (A.3) is invariant under time reversal. Time reversal is a discrete
symmetry transformation given by time reversal operator T̂. For a spin-less electron T̂ is
equal to the operator of the complex conjugation Ĉ (see chap. 11.4 of ref. [30]):

T̂ = Ĉ and T̂−1 = Ĉ. (A.13)

Applying this transformation to the 𝙠-dependent Hamiltonian of eq. (A.8) reveals a con-
nection between the solutions at 𝙠 and −𝙠, namely

T̂−1Ĥ𝙠T̂ = Ĥ−𝙠. (A.14)

From this it follows that
Ĥ−𝙠 (T̂−1𝑢𝙠) = 𝜖𝙠 (T̂−1𝑢𝙠) (A.15)

resulting in the useful relations

𝑢𝑛−𝙠 = 𝑢∗
𝑛𝙠 ↔ 𝜙𝑛,−𝙠 = 𝜙∗

𝑛𝙠 (A.16a)

and
𝜀𝙠 = 𝜀−𝙠. (A.16b)

The spin-1/2 case

Though the present work does not deal with the explicit spin treatment, we will note here
the behaviour of a non-relativistic spin-1/2-dependent Ĥ𝙠 under time reversal. A usual
approximate form derived from the Dirac equation is

Ĥ = 1
2

̂𝙥2 + 𝑈(𝙧 ) − 1
8

̂𝙥4 + 1
8

∇2𝑈(𝙧 ) + 1
4

(∇𝑈(𝙧 ) × ̂𝙥) 𝜎, (A.17)

where 𝜎 is the “vector” of Pauli matrices. The corresponding Bloch Hamiltonian is

Ĥ𝙠 = 1
2

( ̂𝙥 + 𝙠)2 + 𝑈(𝙧 ) − 1
8

( ̂𝙥 + 𝙠)4 + 1
8

∇2𝑈(𝙧 ) + 1
4

(∇𝑈(𝙧 ) × ( ̂𝙥 + 𝙠)) 𝜎. (A.18)

The time reversal operator can then be defined as (see chap. 11.4.2.3 of ref. [30])

T̂ = −i𝞂𝑦Ĉ and T̂−1 = i𝞂𝑦Ĉ, (A.19)

where now also the Pauli matrix 𝞂𝑦

𝞂𝑦 = (
0 −i
i 0 ) (A.20)

enters. It can then be shown that eqs. (A.14) and (A.15) are still valid for eq. (A.18). It then
follows, that to each Bloch function at wave-vector 𝙠

Φ𝑛𝙠(𝙧 ) = (
𝜙𝑛𝙠↑(𝙧 )
𝜙𝑛𝙠↓(𝙧 )) = ei𝙠𝙧

(
𝑢𝑛𝙠↑(𝙧 )
𝑢𝑛𝙠↓(𝙧 )) (A.21)
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the Bloch function at wave-vector −𝙠 is related as

Φ𝑛−𝙠(𝙧 ) = (
𝜙𝑛−𝙠↑(𝙧 )
𝜙𝑛−𝙠↓(𝙧 )) = (

𝜙∗
𝑛𝙠↓(𝙧 )

−𝜙∗
𝑛𝙠↑(𝙧 )) (A.22)

while both are eigenstates to the same energy 𝜀𝑛𝙠.
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B. Lattice Fourier transformation

In this chapter the conventions for the Fourier transform in the context of a periodic crystal
(lattice Fourier transform) are presented. They agree with the definitions given in [10, 17].

B.1. Local and non-local functions
The lattice Fourier transform of an arbitrary local function can be defined as

𝐹𝙂(𝙦) = 1
𝑉 ∫𝑉

𝑓(𝙧 ) e−i(𝙦+𝙂)𝙧 d3𝑟 , (B.1a)

and the corresponding inverse transform is given by

𝑓(𝙧 ) = ∑
𝙦,𝙂

𝐹𝙂(𝙦)ei(𝙦+𝙂)𝙧. (B.1b)

Similarly, for a non-local function depending on two positions the lattice Fourier trans-
form is chosen to be

𝐹𝙂𝙂′(𝙦, 𝙦′) = 1
𝑉 ∬ d3𝑟 d3𝑟′ e−i(𝙦+𝙂)𝙧𝑓(𝙧 , 𝙧 ′)ei(𝙦′+𝙂′)𝙧 ′

(B.2a)

and its inverse then given by

(B.2b)

𝑓(𝙧 , 𝙧 ′) = 1
𝑉 ∑

𝙦,𝙂
∑

𝙦′,𝙂′
ei(𝙦+𝙂)𝙧𝑓𝙂,𝙂′(𝙦, 𝙦′)e−i(𝙦′+𝙂′)𝙧 ′

. (B.2c)

B.2. Periodic function
Formulas (B.1) and (B.2) simplify in the case that the functions are periodic with respect
to a translation with a lattice vector.

For a local function satisfying 𝑓(𝙧 + 𝙍) = 𝑓(𝙧 ), only Fourier coefficients with 𝙦 = 0
will be non-vanishing.

𝑓(𝙧 ) = 1
𝑉 ∑

𝙦𝙂
𝐹𝙂(𝙦)ei(𝙦+𝙂)𝙧 !

= 𝑓(𝙧 + 𝙍) = 1
𝑉 ∑

𝙦𝙂
𝐹𝙂(𝙦)ei(𝙦+𝙂)𝙧ei𝙦𝙍

= 1
𝑉 ∑

𝙂
𝐹𝙂(0)ei𝙂𝙧

(B.3)
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A consequence is that the integral

∫ d𝑟 𝑓(𝙧 )e−i𝙆 𝙧 = 1
𝑉 ∑

𝙂
𝑓(0, 𝙂) ∫ d𝑟 ei(𝙂−𝙆 )𝙧

= 1
𝑉 ∑

𝙂
𝑓(0, 𝙂)𝛿𝙂,𝙆𝑉 = ∑

𝙂
𝑓(0, 𝙂)𝛿𝙂,𝙆

= 𝑓(0, 𝙆 )

(B.4)

is only non-vanishing if 𝙆 is a reciprocal lattice vector. In a similar fashion it can be shown
that the lattice Fourier transform of a non-local function satisfying 𝑓(𝙧 + 𝙍, 𝙧 ′ + 𝙍) =
𝑓(𝙧 , 𝙧 ′) only depends on one 𝙦 variable instead of two

𝑓(𝙧 , 𝙧 ′) = 1
𝑉 ∑

𝙦,𝙂
∑

𝙦′,𝙂′
ei(𝙦+𝙂)𝙧𝐹𝙂𝙂′(𝙦, 𝙦′)e−i(𝙦′+𝙂′)𝙧 ′

!
= 𝑓(𝙧 + 𝙍, 𝙧 ′ + 𝙍) = 1

𝑉 ∑
𝙦,𝙂

∑
𝙦′,𝙂′

ei(𝙦+𝙂)𝙧𝐹𝙂𝙂′(𝙦, 𝙦′)e−i(𝙦′+𝙂′)𝙧 ′
ei(𝙦−𝙦′)𝙍

= 1
𝑉 ∑

𝙦
∑

𝙂,𝙂′
ei(𝙦+𝙂)𝙧𝐹𝙂𝙂′(𝙦, 𝙦)e−i(𝙦+𝙂′)𝙧 ′

.

(B.5)

B.3. Fourier transform in time
The Fourier transform between the time and (angular) frequency domain is chosen to be

𝐹 (𝜔) = ∫ 𝑓(𝑡)ei𝜔𝑡 d𝑡 (B.6a)

with the corresponding inverse transform

𝑓(𝑡) = 1
2𝜋 ∫ 𝐹 (𝜔)e−i𝜔𝑡 d𝜔 . (B.6b)
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C. The (L)APW+lo basis
Exciting employs the augmented plane wave method (APW) in which the unit cell is
partitioned into spherical regions centered around each atom, the so called muffin-tins, and
an interstitial region. Within the interstitial region plane waves are used as basis functions,
while atomic-like functions are used inside the muffin-tins. Each augmented plane wave is
thus defined as

𝜙apw
𝙠+𝙂(𝙧 ) =

⎧
⎪
⎨
⎪
⎩

1
√𝑉

ei(𝙠+𝙂)𝙧 , 𝙧 ∈ interstitial

∑
𝛼,𝑙,𝑚

𝑓 𝛼,𝑙𝑚
𝙠+𝙂(𝑟𝛼)𝑌𝑙𝑚( ̂𝙧𝛼) , 𝙧 ∈ muffin-tin

. (C.1)

Here, 𝙧𝛼 = 𝙧 − 𝙍𝛼 and 𝙍𝛼 is the center of the muffin-tin sphere around atom 𝛼. The
coefficients 𝑓 𝛼,𝑙𝑚

𝙠+𝙂(𝑟𝛼) are given in terms the of real-valued radial functions 𝑢𝛼
𝑙𝑝(𝑟𝛼, 𝐸𝑙) and

the matching coefficients 𝐴𝛼
𝑙𝑚𝑝(𝙠 + 𝙂):

𝑓 𝛼,𝑙𝑚
𝙠+𝙂(𝑟𝛼) =

𝑝max

∑
𝑝=0

𝐴𝛼
𝑙𝑚𝑝(𝙠 + 𝙂)𝑢𝛼

𝑙𝑝(𝑟𝛼, 𝐸𝑙). (C.2)

Within the muffin-tin regions the Kohn-Sham potential is assumed to be spherically sym-
metric and the radial wave function 𝑢𝛼

𝑙 (𝑟𝛼, 𝐸𝑙) is calculated by the radial, scalar-relativistic
Schrödinger equation for a fixed linearization energy𝐸𝑙 [31]. The radial functions 𝑢𝛼

𝑙𝑝(𝑟𝛼, 𝐸𝑙)
are the 𝑝-th energy derivate of the radial wave functions and taking 𝑝max = 1 yields the so-
called linearized augmented plane wave method (LAPW). The matching coefficients are
chosen such that the basis functions are continuous up to the order 𝑝max.

In addition to the APW functions exciting supports so-called local orbitals, which are
atomic-like functions within the muffin-tins

𝜙lo
𝐿(𝙧 ) =

{
0 , 𝙧 ∈ interstitial
𝑣𝛼

𝐿(𝑟𝛼)𝑌𝑙𝑚( ̂𝙧𝛼) , 𝙧 ∈ muffin-tin of atom 𝛼.
(C.3)

The 𝑣𝛼
𝐿(𝑟𝛼) are also combinations of the radial functions 𝑢𝛼

𝑙𝑝(𝑟𝛼, 𝐸𝑏) and matching coeffi-
cients 𝐴𝛼

𝑏

𝑣𝛼
𝐿(𝑟) =

𝑝max

∑
𝑏=0

𝐴𝛼
𝑏𝑢𝛼

𝑙𝑝𝑏
(𝑟, 𝐸𝑏). (C.4)

The matching coefficients are chosen such that the derivatives of the local orbital are zero
up to the (𝑝max − 1)-th order and such that it is normalized within the muffin-tin. Mathe-
matically, a Bloch basis function is constructed from each local orbital according to

𝜙lo
𝙠,𝐿(𝙧 ) = ∑

𝙍
ei𝙍𝙠𝜙lo

𝐿(𝙧 − 𝙍), (C.5)

37



but in practice only integrals over the first unit cell are calculated inwhich case only eq. (C.3)
is needed. Here, the index 𝐿 contains the indices {𝑙, 𝑚, 𝛼} and the matching order 𝑝max.
With the inclusion of local orbitals the overall flexibility of the basis set is increased, espe-
cially with respect to the description of low lying semi-core states. The expansion of the
Bloch wave functions within the (L)APW+lo basis is thus

𝜙𝑛𝙠(𝙧 ) = ∑
𝙂

𝑐𝑛𝙠+𝙂𝜙apw
𝙠+𝙂 + ∑

𝐿
𝑐𝑛𝙠,𝐿𝜙lo

𝙠,𝐿(𝙧 ). (C.6)
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D. Plane-wave matrix elements

The key quantity to compute for the setup of the BSEHamiltonian are the plane-wavematrix
elements (PWE) 𝑀𝑚𝑛𝙠(𝙂, 𝙦), as seen in section 3.3. In the following, we first note some of
their general properties in appendix D.1, then discuss the optical limit in appendix D.2, and
go into detail about how they are computed in the (L)APW+lo basis set in appendix D.3.

D.1. General properties

The matrix elements of a (non-normalized) plane wave and two Bloch states (neglecting
spin) can be written as

⟨𝑓𝙠𝑓|e−i(𝙂+𝙦)𝙧|𝑖𝙠𝑖⟩ = 𝛿⌊𝙠𝑓−𝙠𝑖+𝙦⌋1st BZ,0 𝑀𝑓𝑖𝙠𝑓
(𝙂, 𝙦), (D.1)

where 𝛿⌊𝙠𝑓−𝙠𝑖+𝙦⌋1st BZ,0 denotes that the element is only non-zero if 𝙠𝑖 = 𝙠𝑓 + 𝙦 apart from
some reciprocal lattice vector. From the definition above it follows directly that

𝑀𝑓𝑖𝙠𝑓
(𝙂, 𝙦) = 𝑀∗

𝑖𝑓𝙠𝑖
(−𝙂, −𝙦). (D.2)

Using the time reversal symmetry of the Bloch states |𝑖 − 𝙠⟩ = |(𝑖𝙠)∗⟩, the identity

𝑀𝑓𝑖𝙠𝑓
(𝙂, 𝙦) = 𝑀𝑖𝑓−𝙠𝑖

(𝙂, 𝙦) (D.3)

is found.

D.2. Optical limit of the plane wave matrix elements

In order to take the limit 𝙦 → 0 of the plane-wave matrix element ⟨𝑓𝙠f|e−i(𝙂+𝙦)𝙧|𝑖𝙠f + 𝙦⟩
at 𝙂 = 0 some care has to be taken. The expansion for small 𝙦 is given by

⟨𝑓𝙠f|e−i𝙦𝙧|𝑖𝙠f + 𝙦⟩ = ⟨𝑓𝙠f| 1 − i𝙦𝙧 + … (|𝑖𝙠f⟩ + 𝙦∇𝙠 |𝑖𝙠⟩ |𝙠f + … )
= 𝛿𝑓𝑖 + i𝙦 ⟨𝑓𝙠f|−𝙧|𝑖𝙠f⟩ + 𝙦 ⟨𝑓𝙠f| (∇𝙠 |𝑖𝙠⟩)𝙠f

+ 𝑂(𝙦2).

≈ 𝛿𝑓𝑖 + i𝙦 ⟨𝑓𝙠f|−𝙧|𝑖𝙠f⟩

(D.4)

If the potential part of the one-particle Hamiltonian is local, the usual canonical commuta-
tion relations hold

[ ̂r𝑖, p̂𝑗] = i𝛿𝑖𝑗 (D.5a)
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[ĥ, ̂𝙧] = −i ̂𝙥, (D.5b)

which enable us to express the 𝙧 expectation value in (D.4) in terms of momentum matrix
elements

⟨𝑓𝙠f|−𝙧|𝑖𝙠f⟩ = i
⟨𝑓𝙠f|𝙥|𝑖𝙠f⟩
𝜖𝑓𝙠f − 𝜖𝑖𝙠f

≕ 𝘿𝑓𝑖𝙠f. (D.6)

The 𝘿𝑓𝑖𝙠f are the dipole operator matrix elements for electronic transitions. Plugging (D.6)
into (D.4) yields

𝑀𝑓𝑖𝙠f(0, 𝙦)
𝑞≪1
= 𝛿𝑓𝑖 + i𝙦T𝘿𝑓𝑖𝙠f(1 − 𝛿𝑓𝑖). (D.7)

D.3. Computation in the (L)APW+lo basis

The expressions for the PEWs in terms of the (L)APW+lo basis functions are documented
in detail in Ref. [11], chapter 8.2. In the following, we note the main results and sub-
sequently point out necessary changes to compute the modified plane-wave matrix ele-
ments 𝑁𝑚𝑛𝙠(𝙂, 𝙦) (3.43) needed for the construction of the coupling block of the screened
Coulomb interaction (3.42).

D.3.1. Plane-wave matrix elements

In terms of the (L)APW+lo basis functions [see eqs. (C.1), (C.3) and (C.6)] the element

𝑀𝑛𝑚𝙠′(𝙂, 𝙦) = ⟨𝜙𝑛𝙠′|e−i(𝙂+𝙦)𝙧|𝜙𝑚𝙠″⟩ 𝛿⌊𝙠′−𝙠″+𝙦⌋1st BZ,0 (D.8)

can be written as

𝑀𝑛𝑚𝙠′(𝙂, 𝙦)/𝑁𝙠 = ∑
𝙂′𝙂″

𝑐∗
𝑛𝙠′+𝙂′𝑐𝑚𝙠″+𝙂″𝑀𝙂′𝙂″𝙠′(𝙂, 𝙦)

+ ∑
𝙂′𝐿″

𝑐∗
𝑛𝙠′+𝙂′𝑐𝑚𝙠″,𝐿″𝑀𝙂′𝐿″𝙠′(𝙂, 𝙦)

+ ∑
𝐿′𝙂″

𝑐∗
𝑛𝙠′,𝐿′𝑐𝑚𝙠″+𝙂″𝑀𝐿′𝙂″𝙠′(𝙂, 𝙦)

+ ∑
𝐿′𝐿″

𝑐∗
𝑛𝙠′,𝐿′𝑐𝑚𝙠″,𝐿″𝑀𝐿′𝐿″𝙠′(𝙂, 𝙦)

, (D.9)

where the integrals over the unit cell between the two types of basis functions are

𝑀𝙂′𝙂″𝙠′(𝙂, 𝙦) = ⟨𝜙𝙠′+𝙂′|e−i(𝙂+𝙦)𝙧|𝜙𝙠″+𝙂″⟩Ω (D.10a)

𝑀𝙂′𝐿″𝙠′(𝙂, 𝙦) = ⟨𝜙𝙠′+𝙂′|e−i(𝙂+𝙦)𝙧|𝜙𝙠″,𝐿″⟩Ω (D.10b)

𝑀𝐿′𝙂″𝙠′(𝙂, 𝙦) = ⟨𝜙𝙠′,𝐿′|e−i(𝙂+𝙦)𝙧|𝜙𝙠″+𝙂″⟩Ω (D.10c)
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𝑀𝐿′𝐿″𝙠′(𝙂, 𝙦) = ⟨𝜙𝙠′,𝐿′|e−i(𝙂+𝙦)𝙧|𝜙𝙠″,𝐿″⟩Ω . (D.10d)

The integrals above can be split into two contribution, stemming from the interstitial and
the muffin-tin part of the unit cell

𝑀𝑎𝑏𝙠(𝙂, 𝙦) = 𝑀 I
𝑎𝑏𝙠(𝙂, 𝙦) + 𝑀MT

𝑎𝑏𝙠 (𝙂, 𝙦), (D.11)

where 𝑎, 𝑏 ∈ {𝙂′, 𝙂″, 𝐿′, 𝐿″}. In the interstitial region, only the plane-wave part of the
APW functions is non-zero, so that only 𝑀 I

𝙂′𝙂″𝙠′(𝙂, 𝙦) needs to be calculated. Using the
lattice-theta function ΘI(𝙧 )

ΘI(𝙧 ) =
{

1 , 𝙧 ∈ interstitial
0 , else

, (D.12)

it is given by

𝑀 I
𝙂′𝙂″𝙠′(𝙂, 𝙦) = 1

Ω ∫Ω
ΘI(𝙧 )e−i(𝙠′+𝙂′)𝙧e−i(𝙦+𝙂)𝙧ei(𝙠″+𝙂″)𝙧 d3𝑟

= 1
Ω ∫Ω

ΘI(𝙧 )e−i(𝙂′−𝙂″+𝙂)𝙧 d3𝑟 = Θ̃I(𝙂′ − 𝙂″ + 𝙂),
(D.13)

where Θ̃I is the lattice Fourier transform of ΘI. In the muffin-tin regions all four integrals
eq. (D.10) are non-vanishing. After expanding the exponential e−i(𝙦+𝙂)𝙧 in terms of spher-
ical harmonics 𝑌𝑙𝑚 and spherical Bessel functions of first kind 𝑗𝑙 according to

e−i(𝙦+𝙂)𝙧 = 4𝜋 ∑
𝑙𝑚

(−𝑖)𝑙𝑗𝑙(|𝙦 + 𝙂|𝑟)𝑌𝑙𝑚( ̂𝙧 )𝑌 ∗
𝑙𝑚(𝙦 + 𝙂), (D.14)

the APW-APW elements are found to be

𝑀MT
𝙂′𝙂″𝙠′(𝙂, 𝙦) = 4𝜋 ∑

𝛼
e−i(𝙂+𝙦)𝙍𝛼

∑
𝑙′𝑚′𝑝′

(𝐴𝛼
𝑙′𝑚′𝑝′(𝙠′ + 𝙂′))

∗

× ∑
𝑙″𝑚″𝑝″

𝐴𝛼
𝑙″𝑚″𝑝″(𝙠″ + 𝙂″)𝑋𝛼

𝑙′𝑚′𝑝′,𝑙″𝑚″𝑝″(𝙦 + 𝙂), (D.15a)

where 𝑋 and 𝑅 are auxiliary quantities defined as

𝑋𝛼
𝑙′𝑚′𝑝′,𝑙″𝑚″𝑝″(𝙦 + 𝙂) = ∑

𝑙
(−i)𝑙𝑅𝛼

𝑙′𝑝′,𝑙″𝑝″,𝑙(𝙦 + 𝙂) ∑
𝑚

𝑌 ∗
𝑙𝑚(𝙦 + 𝙂)𝐶 𝑙′𝑚′

𝑙𝑚,𝑙″𝑚″ (D.15b)

and

𝑅𝛼
𝑙′𝑝′,𝑙″𝑝″,𝑙(𝙦 + 𝙂) = ∫

𝑅MT
𝛼

0
𝑢𝛼

𝑙′𝑝′(𝑟)𝑗𝑙(|𝙦 + 𝙂|𝑟)𝑢𝛼
𝑙″𝑝″(𝑟)𝑟2 d𝑟 . (D.15c)

Here, the 𝐶 are the so-called Gaunt coefficients

𝐶 𝑙′𝑚′

𝑙𝑚,𝑙″𝑚″ = ∬ 𝑌 ∗
𝑙′𝑚′( ̂𝙧 )𝑌𝑙𝑚( ̂𝙧 )𝑌𝑙″𝑚″( ̂𝙧 ) dΩ . (D.16)
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The APW-LO matrix elements are given by

𝑀MT
𝙂′𝐿″𝙠(𝙂, 𝙦) = 4𝜋 ∑

𝛼
e−i(𝙂+𝙦)𝙍𝛼

∑
𝑙′𝑚′𝑝′

(𝐴𝛼
𝑙′𝑚′𝑝′(𝙠′ + 𝙂′))

∗
𝑋𝛼

𝑙′𝑚′𝑝′,𝐿″(𝙦 + 𝙂),

(D.17a)
with

𝑋𝛼
𝑙′𝑚′𝑝′,𝐿″(𝙦 + 𝙂) = ∑

𝑙
(−i)𝑙𝑅𝛼

𝑙′𝑝′,𝐿″,𝑙(𝙦 + 𝙂) ∑
𝑚

𝑌 ∗
𝑙𝑚(𝙦 + 𝙂)𝐶 𝑙′𝑚′

𝑙𝑚,𝑙″𝑚″ (D.17b)

and

𝑅𝛼
𝑙′𝑝′,𝐿″,𝑙(𝙦 + 𝙂) = 𝛿𝛼,𝛼″ ∫

𝑅MT
𝛼

0
𝑢𝛼

𝑙′𝑝′(𝑟)𝑗𝑙(|𝙦 + 𝙂|𝑟)𝑣𝛼
𝐿″(𝑟)𝑟2 d𝑟 . (D.17c)

Lastly, the LO-LO matrix elements are computed using

𝑀MT
𝐿′𝐿″𝙠′(𝙂, 𝙦) = 4𝜋 ∑

𝛼
e−i(𝙂+𝙦)𝙍𝛼𝑋𝛼

𝐿′,𝐿″(𝙦 + 𝙂), (D.18a)

with

𝑋𝛼
𝐿′,𝐿″(𝙦 + 𝙂) = ∑

𝑙
(−i)𝑙𝑅𝛼

𝐿′,𝐿″,𝑙(𝙦 + 𝙂) ∑
𝑚

𝑌 ∗
𝑙𝑚(𝙦 + 𝙂)𝐶 𝑙′𝑚′

𝑙𝑚,𝑙″𝑚″ (D.18b)

and

𝑅𝛼
𝐿′,𝐿″,𝑙(𝙦 + 𝙂) = 𝛿𝛼,𝛼′𝛿𝛼,𝛼″ ∫

𝑅MT
𝛼

0
𝑣𝛼

𝐿′(𝑟)𝑗𝑙(|𝙦 + 𝙂|𝑟)𝑣𝛼
𝐿″(𝑟)𝑟2 d𝑟 . (D.18c)

D.3.2. Modified plane-wave matrix elements

In order to calculate the modified plane-wave matrix elements

𝑁𝑛𝑚𝙠′(𝙂, 𝙦) = ⟨𝜙𝑛𝙠′|e−i(𝙂+𝙦)𝙧|(𝜙𝑚𝙠″)
∗
⟩ 𝛿⌊𝙠′+𝙠″+𝙦⌋1st BZ,0 (D.19)

we need first to express the complex conjugate of the basis functions. Using the property
of the spherical harmonics 𝑌 ∗

𝑙𝑚(𝜑, 𝜃) = (−1)𝑚𝑌𝑙−𝑚(𝜑, 𝜃), we get

𝜙apw∗
𝙠+𝙂 (𝙧 ) =

⎧⎪
⎪
⎨
⎪
⎪⎩

1
√𝑉

e−i(𝙠+𝙂)𝙧 , 𝙧 ∈ interstitial

∑
𝛼,𝑙,𝑚

𝑝max

∑
𝑝=0

𝐴𝛼∗
𝑙𝑚𝑝(𝙠 + 𝙂)𝑢𝛼

𝑙𝑝(𝑟𝛼, 𝐸𝑙)(−1)𝑚𝑌𝑙−𝑚( ̂𝙧𝛼) , 𝙧 ∈ muffin-tin
(D.20)

for the APW basis functions, and

𝜙lo∗
𝐿 (𝙧 ) =

{
0 , 𝙧 ∈ interstitial
𝑣𝛼

𝐿(𝑟𝛼)(−1)𝑚𝑌𝑙−𝑚( ̂𝙧𝛼) 𝙧 ∈ muffin-tin of atom 𝛼.
(D.21)
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for the local orbitals. In analogy to eq. (D.9) it is

𝑁𝑛𝑚𝙠′(𝙂, 𝙦)/𝑁𝙠 = ∑
𝑎≠𝑏

𝑐∗
𝑛,𝑎𝑐∗

𝑚,𝑏𝑁𝑎𝑏𝙠′(𝙂, 𝙦), (D.22)

where again 𝑎, 𝑏 ∈ {𝙂′, 𝙂″, 𝐿′, 𝐿″}. The interstitial part (D.13) simply changes to

𝑁 I
𝙂′𝙂″𝙠′(𝙂, 𝙦) = Θ̃I(𝙂′ + 𝙂″ + 𝙂), (D.23)

while the muffin-tin contributions (D.15a), (D.17a) and (D.18a) change according to

𝑁MT
𝙂′𝙂″𝙠′(𝙂, 𝙦) = 4𝜋 ∑

𝛼
e−i(𝙂+𝙦)𝙍𝛼

∑
𝑙′𝑚′𝑝′

(𝐴𝛼
𝑙′𝑚′𝑝′(𝙠′ + 𝙂′))

∗

× ∑
𝑙″𝑚″𝑝″

(𝐴𝛼
𝑙″𝑚″𝑝″(𝙠″ + 𝙂″))

∗
(−1)𝑚″

𝑋𝛼
𝑙′𝑚′𝑝′,𝑙″−𝑚″𝑝″(𝙦 + 𝙂), (D.24a)

𝑁MT
𝙂′𝐿″𝙠(𝙂, 𝙦) = 4𝜋 ∑

𝛼
e−i(𝙂+𝙦)𝙍𝛼

∑
𝑙′𝑚′𝑝′

(𝐴𝛼
𝑙′𝑚′𝑝′(𝙠′ + 𝙂′))

∗

(−1)𝑚″
𝑋𝛼

𝑙′𝑚′𝑝′,𝐿″(−𝑚″)(𝙦 + 𝙂), (D.24b)

and
𝑁MT

𝐿′𝐿″𝙠′(𝙂, 𝙦) = 4𝜋 ∑
𝛼

e−i(𝙂+𝙦)𝙍𝛼(−1)𝑚″
𝑋𝛼

𝐿′,𝐿″(−𝑚″)(𝙦 + 𝙂) (D.24c)

respectively.
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E. Dielectric response of a Kohn-Sham
system

In this chapter we describe the dielectric response of a Kohn-Sham system. An expression
for the dielectric matrix is derived which serves as a starting point for the BSE formalism.

E.1. Linearization of the Liouville-von-Neumann equation
For a system of independent particles, as described by the Kohn-Sham equations (2.7), the
longitudinal dielectric function can be derived using the equation of motion for the density
matrix operator ̂𝜌 (see [2, 32]) and the procedure is sketched in the following. The time-
dependent Kohn-Sham Hamiltonian including the perturbing potential can be written in
terms of the unperturbed Hamiltonian plus the total perturbing effective potential as

ĥKS(𝑡) = ĥ(0)
KS + 𝛿𝑉eff(𝑡) = ĥ(0)

KS + 𝑉ext(𝑡) + 𝛿𝑉H(𝑡) + 𝛿𝑉xc(𝑡) (E.1)

and the corresponding Schrödinger equation reads

i d
d𝑡

|𝛼(𝑡)⟩ = ĥKS(𝑡) |𝛼(𝑡)⟩ . (E.2)

The time evolution of the density matrix operator

̂𝜌(𝑡) =
occ

∑
𝛼

|𝛼(𝑡)⟩⟨𝛼(𝑡)| (E.3)

is given by the Liouville-von-Neumann equation

i d
d𝑡

̂𝜌(t) = [ĥKS(𝑡), ̂𝜌(𝑡)]. (E.4)

Splitting also the density matrix operator into a unperturbed and a perturbed part

̂𝜌(𝑡) = ̂𝜌(0) + ̂𝜌(1)(𝑡) (E.5)

allows for a linearization of (E.4) by omitting the commutator [𝛿𝑉eff(𝑡), ̂𝜌(1)(𝑡)]

i d
d𝑡

̂𝜌(1)(𝑡) = [ĥ(0)
KS, ̂𝜌(1)(𝑡)] + [𝛿𝑉eff(𝑡), ̂𝜌(0)(𝑡)]. (E.6)

Taking the matrix element of (E.6) between two eigenstates ⟨𝑚| and |𝑛⟩ of the unperturbed
system yields

i d
d𝑡

𝜌(1)
𝑚𝑛(𝑡) = (𝜀𝑚 − 𝜀𝑛)𝜌(1)

𝑚𝑛(𝑡) + (𝑓𝑛 − 𝑓𝑚)𝛿𝑉eff,𝑚𝑛(𝑡). (E.7)
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Inserting the Fourier transforms of the total perturbing potential and the density matrix
variation

𝛿𝑉eff,𝑚𝑛(𝑡) = ∫
d𝜔
2𝜋

𝛿𝑉eff,𝑚𝑛(𝜔)e−i(𝜔+i𝜂)𝑡 (E.8a)

𝜌(1)
𝑚𝑛(𝑡) = ∫

d𝜔
2𝜋

𝜌(1)
𝑚𝑛(𝜔)e−i(𝜔+i𝜂)𝑡 (E.8b)

results in
𝜌(1)

𝑚𝑛(𝜔) =
𝑓𝑚 − 𝑓𝑛

𝜀𝑛 − 𝜀𝑚 − 𝜔 − i𝜂
𝛿𝑉eff,𝑚𝑛(𝜔), (E.9)

where the 𝜂 > 0 factor accounts for the adiabatically switching on of the perturbation in the
past. Now, a new response function 𝑅(𝙧 , 𝙧 ′, 𝑡) can be introduced that relates the induced
charge density linearly with the total effective perturbing potential (the factor of 2 accounts
for the assumed spin degeneracy)

𝑛ind(𝙧 , 𝜔) = 2𝜌(1)(𝙧 , 𝙧 , 𝜔) ≡ ∫ 𝑅(𝙧 , 𝙧 ′, 𝜔)𝛿𝑉eff(𝙧 ′, 𝜔) d3𝑟′ . (E.10)

This response function is directly found using (E.9),

𝜌(1)(𝙧 , 𝙧 , 𝜔) = ∑
𝑚,𝑛

𝜙𝑚(𝙧 )𝜌(1)
𝑚𝑛(𝜔)𝜙∗

𝑛(𝙧 ) (E.11)

and
𝛿𝑉eff,𝑚𝑛(𝜔) = ∫ 𝜙∗

𝑚(𝙧 )𝛿𝑉eff(𝙧 , 𝜔)𝜙𝑛(𝙧 ) d3𝑟 (E.12)

to be

𝑅(𝙧 , 𝙧 ′, 𝜔) = 2 ∑
𝑚,𝑛

𝑓𝑛 − 𝑓𝑚
𝜀𝑛 − 𝜀𝑚 + 𝜔 + i𝜂

𝜙∗
𝑛(𝙧 )𝜙𝑚(𝙧 ) (𝜙∗

𝑛(𝙧 ′)𝜙𝑚(𝙧 ′))
∗ . (E.13)

In order to relate the response 𝑅 to the dielectric function (1.12) we express it in terms
of the response functions used in (1.16). For the susceptibility we find

𝜒 = 𝛿𝑛ind

𝛿𝑉 ext = 𝛿𝑛ind

𝛿𝑉 eff (1 +
𝛿𝑉H

𝛿𝑛ind
𝛿𝑛ind

𝛿𝑉ext
+

𝛿𝑉xc

𝛿𝑛ind
𝛿𝑛ind

𝛿𝑉ext)
= 𝑅 + 𝑅(𝑣 + 𝑓xc)𝜒, (E.14)

where
𝑓xc(𝙧 , 𝑡; 𝙧 ′, 𝑡′) ≔

𝛿𝑉xc(𝙧 , 𝑡)
𝛿𝑛ind(𝙧 ′, 𝑡′)

(E.15)

is the exchange-correlation kernel. A similar procedure relates 𝑅 to the polarizability 𝑃
according to

𝑃 = 𝑅 + 𝑅𝑓xc𝑃 . (E.16)

Neglecting the exchange-correlation effects, i.e. setting 𝑓xc = 0 yields 𝑃 and 𝜒 in the so
called Random-Phase-approximation (RPA).
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E.2. Dielectic matrix in RPA
In the RPA we neglect 𝑓xc in eq. (E.16), so that 𝑃 0 = 𝑅 and write for the lattice Fourier
transform of 𝜀0:

𝜀0
𝙂𝙂′(𝙦, 𝜔) = 𝛿𝙂𝙂′ − 𝑣𝙂(𝙦)𝑃 0

𝙂𝙂′(𝙦, 𝜔), (E.17)

where the lattice Fourier transform of 𝑃 0 can be expressed using the plane wave matrix
elements eq. (3.30) as

𝑃 0
𝙂𝙂′(𝙦, 𝜔) = 1

𝑉 ∑
𝑜𝑢𝙠

(𝑤𝑜𝑢𝙠(𝙦, 𝜔)𝑀𝑜𝑢𝙠(𝙂, 𝙦)𝑀∗
𝑜𝑢𝙠(𝙂′, 𝙦)

+ 𝑤𝑢𝑜𝙠(𝙦, 𝜔)𝑀𝑢𝑜𝙠(𝙂, 𝙦)𝑀∗
𝑢𝑜𝙠(𝙂′, 𝙦))

≕ 𝑃 0,R
𝙂𝙂′(𝙦, 𝜔) + 𝑃 0,AR

𝙂𝙂′ (𝙦, 𝜔),

(E.18)

where o (u) denotes occupied (unoccupied) states. The resonant and anti-resonant weights
are defined as

𝑤𝑜𝑢𝙠(𝙦, 𝜔) =
𝑓𝑜𝙠 − 𝑓𝑢𝙠+𝙦

𝜔 − (𝜀𝑢𝙠+𝙦 − 𝜀𝑜𝙠) + i𝛿
𝑤𝑢𝑜𝙠(𝙦, 𝜔) =

𝑓𝑜𝙠+𝙦 − 𝑓𝑢𝙠

−𝜔 − (𝜀𝑢𝙠 − 𝜀𝑜𝙠+𝙦) − i𝛿
. (E.19)

The resonant and anti-resonant contributions are related by the symmetry properties of the
plane-wave matrix elements as

𝑃 0,AR
𝙂𝙂′ (𝙦, 𝜔) = 𝑃 0,R∗

−𝙂−𝙂′(−𝙦, −𝜔). (E.20)

Employing the time reversal symmetry yields another relation, namely

𝑃 0,AR
𝙂𝙂′ (𝙦, 𝜔) = 𝑃 0,R∗

𝙂′𝙂 (𝙦, −𝜔). (E.21)

Comparing eq. (E.13) and eq. (3.3) and neglecting the different time-ordering, one finds

𝜒0(𝙧 , 𝙧 ′, 𝙧 , 𝙧 ′, 𝜔) = 𝑃 0(𝙧 , 𝙧 ′, −𝜔) (E.22)

if the quasi-particle wave-functions are replaced with the Kohn-Sham orbitals. The differ-
ing sign in the frequency stems from the choice to do the Fourier transform of the BSE
eq. (2.24) in 𝑡2 − 𝑡1 instead of 𝑡1 − 𝑡2 in order to comply with [16].

We are interested in the case of static screening, i.e. 𝜔 = 0, and we construct 𝜀0 without
broadening, i.e. 𝛿 = 0. In this case, it is

𝑃 0,AR
𝙂𝙂′ (𝙦, 0)

t.r.
= 𝑃 0,R∗

𝙂′𝙂 (𝙦, 0)
𝛿=0
= 𝑃 0,R

𝙂𝙂′(𝙦, 0). (E.23)

from which follows that eq. (E.18) reduces to

𝑃 0
𝙂𝙂′(𝙦, 0) = 2𝑃 0,R

𝙂𝙂′(𝙦, 0). (E.24)
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F. Fourier Transform of 𝐿0

In the construction of the matrix form of the Bethe-Salpeter equation the Fourier transform
of the independent part 𝐿0 of the two-particle correlation function 𝐿 from the time to the
frequency domain is needed. Since only electron-hole propagation is considered, 𝐿0 only
depends on one time difference 𝑡 = 𝑡2 − 𝑡1, see section 2.3.4.

With the the definition of 𝐿0 eq. (2.25) it is

𝐿0(𝙧1, 𝙧2, 𝙧 ′
1 , 𝙧 ′

2 , 𝑡) = 𝐺1(𝙧1, 𝙧 ′
2 , −𝑡)𝐺1(𝙧2, 𝙧 ′

1 , 𝑡) (F.1)

and using the independent quasiparticle approximation of 𝐺1 eq. (2.20) we can write

𝐿0(𝙧1, 𝙧2, 𝙧 ′
1 , 𝙧 ′

2 , 𝜔) = ∫ d𝑡 ∬
d𝜔′

2𝜋
d𝜔″

2𝜋
𝐺1(𝙧1, 𝙧 ′

2 , 𝜔′)𝐺1(𝙧2, 𝙧 ′
1 , 𝜔″)ei(𝜔+𝜔′−𝜔″)𝑡

= ∫
d𝜔′

2𝜋
𝐺1(𝙧1, 𝙧 ′

2 , 𝜔′)𝐺1(𝙧2, 𝙧 ′
1 , 𝜔′ + 𝜔)

= ∑
𝑘,𝑙

∫
d𝜔′

2𝜋
𝜓𝑘(𝙧1)𝜓∗

𝑘 (𝙧 ′
2)𝜓𝑙(𝙧2)𝜓∗

𝑙 (𝙧 ′
1)

(𝜔′ − 𝜀𝑘 + i𝛿 sgn(𝜀𝑘 − 𝐸f)) (𝜔′ + 𝜔 − 𝜀𝑙 + i𝛿 sgn(𝜀𝑙 − 𝐸f))
.

(F.2)

Closing the contour in the upper half in the complex plane, the integral (F.2) is non-zero
only if 𝜀𝑘 > 𝐸f ∧ 𝜀𝑙 < 𝐸f or 𝜀𝑘 < 𝐸f ∧ 𝜀𝑙 > 𝐸f and we get

𝐿0(𝙧1, 𝙧2, 𝙧 ′
1 , 𝙧 ′

2 , 𝜔) = i ∑
𝑘,𝑙

𝜓𝑘(𝙧1)𝜓∗
𝑘 (𝙧 ′

2)𝜓𝑙(𝙧2)𝜓∗
𝑙 (𝙧 ′

1)

× [−
Θ(𝜀𝑘 − 𝐸f)Θ(𝐸f − 𝜀𝑙)

𝜀𝑘 − 𝜀𝑙 + 𝜔 − i𝛿
+

Θ(𝐸f − 𝜀𝑘)Θ(𝜀𝑙 − 𝐸f)
𝜀𝑘 − 𝜀𝑙 + 𝜔 + i𝛿 ] . (F.3)

For an insulator without partial occupations we find in terms of the occupied (o) and unoc-
cupied (u) states

𝐿0(𝙧1, 𝙧2, 𝙧 ′
1 , 𝙧 ′

2 , 𝜔) = −i ∑
𝑜,𝑢

𝜓𝑢(𝙧1)𝜓∗
𝑢 (𝙧 ′

2)𝜓𝑜(𝙧2)𝜓∗
𝑜 (𝙧 ′

1)
𝜀𝑢 − 𝜀𝑜 + 𝜔 − i𝛿

+
𝜓𝑜(𝙧1)𝜓∗

𝑜 (𝙧 ′
2)𝜓𝑢(𝙧2)𝜓∗

𝑢 (𝙧 ′
1)

𝜀𝑢 − 𝜀𝑜 − 𝜔 − i𝛿

= −i ∑
𝑜,𝑢

𝜓𝑜(𝙧1)𝜓∗
𝑢 (𝙧 ′

1)𝜓∗
𝑜 (𝙧 ′

2)𝜓𝑢(𝙧2)
𝜀𝑢 − 𝜀𝑜 − 𝜔 − i𝛿

+
𝜓𝑢(𝙧1)𝜓∗

𝑜 (𝙧 ′
1)𝜓∗

𝑢 (𝙧 ′
2)𝜓𝑜(𝙧2)

𝜀𝑢 − 𝜀𝑜 + 𝜔 − i𝛿

= i ∑
𝑜,𝑢

𝜓𝑜(𝙧1)𝜓∗
𝑢 (𝙧 ′

1)𝜓∗
𝑜 (𝙧 ′

2)𝜓𝑢(𝙧2)
𝜔 − (𝜀𝑢 − 𝜀𝑜) + i𝛿

+
𝜓𝑢(𝙧1)𝜓∗

𝑜 (𝙧 ′
1)𝜓∗

𝑢 (𝙧 ′
2)𝜓𝑜(𝙧2)

−𝜔 − (𝜀𝑢 − 𝜀𝑜) + i𝛿
.

(F.4)
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Alternativley we can write eq. (F.3) for the insulator case equivalently as

𝐿0(𝙧1, 𝙧2, 𝙧 ′
1 , 𝙧 ′

2 , 𝜔) = −i ∑
𝑘,𝑙

𝜓𝑘(𝙧1)𝜓∗
𝑙 (𝙧 ′

1)𝜓∗
𝑘 (𝙧 ′

2)𝜓𝑙(𝙧2) |𝑓𝑘 − 𝑓𝑙|

|𝜀𝑘 − 𝜀𝑙| + 𝜔 sgn(𝜀𝑘 − 𝜀𝑙) − i𝛿

= i ∑
𝑘,𝑙

𝜓𝑘(𝙧1)𝜓∗
𝑙 (𝙧 ′

1)𝜓∗
𝑘 (𝙧 ′

2)𝜓𝑙(𝙧2) |𝑓𝑘 − 𝑓𝑙|
𝜔 sgn(𝜀𝑙 − 𝜀𝑘) − |𝜀𝑘 − 𝜀𝑙| + i𝛿

(F.5)

which can be used to treat partial occupancies in semiconductors. A factor of 2 can be
introduced here to account for the spin degeneracy of the occupation factors.
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