Second harmonic generation in strained monolayer transition metal dichalcogenides

Valerie Smejkal1, Lukas Mennel2, Thomas Müller2, Lukas Linhart1, Joachim Burgdörfer1 and Florian Libisch1

1Institute of Theoretical Physics, Vienna University of Technology
2Photonics Institute, Vienna University of Technology
Material response to an external field

linear optics:
the response of a crystal to an electric field \(F \) depends linearly on the field

\[
P(\omega) = \chi^{(1)}(\omega) F(\omega)
\]

nonlinear optics: with increasing field strength, higher orders can be important

\[
P_{\omega} = \chi^{(1)}(\omega_0) F_{\omega_0} + \chi^{(2)}(2\omega_0) F_{\omega_0} F_{\omega_0} + \chi^{(3)}(3\omega_0) F_{\omega_0} F_{\omega_0} F_{\omega_0} + \ldots
\]
Second harmonic generation (SHG)

amplitude:

$$\chi^{(3)} F^3 \ll \chi^{(2)} F^2 \ll \chi^{(1)} F$$

but...

symmetry!

$$P(F) = \chi^{(1)} F + \chi^{(2)} F^2 + \chi^{(3)} F^3 + \cdots$$

$$P(-F) = -\chi^{(1)} F + \chi^{(2)} F^2 - \chi^{(3)} F^3 + \cdots = -P(F)$$
Importance of SHG?

• Radiation source
 ▪ coherent light at higher frequency

• Diagnostics
 ▪ surface sensitive technique to analyze properties of materials
 ▪ analyze change of electronic and crystal structure
 ⇒ strain mapping in 2D materials
Transition metal dichalcogenides (TMDs)

2D materials
- graphene (semi-metal)
- hBN (insulator)
- TMDs (semiconductor)

TM = Mo, W, etc.
D = S, Se, Te

Strain mapping in TMDs
A model for strained TMDs

PRISTINE

\[P_i = \chi^{(2)}_{ijk} F_j F_k \]

STRAINED

\[\chi^{(2)}_{ijk} = \chi^{(2,0)}_{ijk} + \frac{\partial \chi^{(2)}_{ijk}}{\partial u_{lm}} u_{lm} \]

\(u_{lm} \) ... strain tensor

photoelastic tensor

\[p_{ijklm} = \frac{\partial \chi^{(2)}_{ijk}}{\partial u_{lm}} \]

• 2\(^3\) components
• 4 non-vanishing
 \(\chi_{xxx} = -\chi_{xyy} = -\chi_{yxy} = -\chi_{yyx} = \chi_0 \)
• 1 independent parameter \(\chi_0 \)

• 2\(^5\) components
• 12 non-vanishing
• symmetry: 2 independent parameters \(p_1 \) and \(p_2 \)
Experimental idea

apply controlled strain
$\epsilon_{aa}, \epsilon_{bb}, \chi_0$ known

measure SHG

get p_1, p_2

map elastic strain in an arbitrarily oriented sample
$\epsilon_{aa}, \epsilon_{bb}$

First principles calculation

- long wavelength limit
- independent particle approximation (IPA)
- neglect local field effects

\[\mathcal{H}(t) = \frac{1}{2} \sum_i [p_i^2 + V_{KS}(x_i)] + \sum_i p_i \cdot A(t) \]

\[F(t) = -\frac{1}{c} \frac{\partial}{\partial t} A(t) \]

\[\chi^{(2)}(-2\omega; \omega, \omega) \propto \sum_{nm} \int \frac{d\mathbf{k}}{\omega_{nm}(\mathbf{k}) - 2\omega} \left[\frac{f_{nl}r_{nm}(\mathbf{k})r_{ml}(\mathbf{k})r_{ln}(\mathbf{k})}{\omega_{ln}(\mathbf{k}) - \omega} + \frac{f_{ml}r_{nm}(\mathbf{k})r_{ml}(\mathbf{k})r_{ln}(\mathbf{k})}{\omega_{ml}(\mathbf{k}) - \omega} \right] \]

\[\omega_{nm} = \omega_n - \omega_m \quad \text{... transition energy} \]
\[f_{nm} = f_n - f_m \quad \text{... difference in occupation} \]
\[r_{nm} \quad \text{... dipole matrix element} \]

used as implemented in the exciting-code [1,2]

Strongest transition amplitude in regions of the Brillouin zone where the bands are parallel (band nesting)

This is also where the bands change strongly under strain

vacuum = 18 Å
k = 70×70×1
n\textsubscript{unocc} = 40
R\text{G}_{\text{max}} = 10.0
Sensitivity of the SHG signal to strain

Experiment

\[2\omega = 3.1 \text{ eV} \]

Very strong change with strain

Simulation

\[2\omega = 2.62 \text{ eV} \]

Same qualitative trend
Verification of the photoelastic tensor description

comparison fit \((p_1, p_2)\) and simulation \(2\omega=2.62\) eV

... but exhibits a strong energy dependence

linearization of \(\chi^{(2)}\) works well...
Origin of the energy dependence

$$\omega = \epsilon_{ck} - \epsilon_{vk}$$

$$\text{joint density of states}$$

$$\text{JDOS}(\omega) \propto \sum_{vck} \delta (\omega - (\epsilon_{ck} - \epsilon_{vk}))$$

details of the directional dependence from dipole moments r_{nm}
Effects of strain at different energies

- peaks shifted to lower energies
- changes shape of the peaks
- shifts resonances in k-space

Strongest response to strain can be expected on the edges of the excitation peak

Current measurements at fixed energies ⇒ energy dependent measurements are in preparation
conclusion

- strain mapping via SHG is an excellent tool for strain measurements in TMDs
- a tunable laser will be needed due to the energy dependence of the photoelastic tensor
- best resolution can be achieved on the rising and falling edges of the signal
 ⇒ this is also where the photoelastic tensor description can be applied

outlook

- compare to experimental energy-dependent data
- beyond IPA: inclusion of local field and excitonic effects

THANK YOU