Computer Physics Communications 184 (2013) 1861-1873

Computer Physics Communications

Contents lists available at SciVerse ScienceDirect COMPUTER PHYSICS

COMMUNICATIONS

journal homepage: www.elsevier.com/locate/cpc

ElaStic: Atool for calculating second-order elastic constants from

first principles

@ CrossMark

Rostam Golesorkhtabar *>*, Pasquale Pavone ®™!, Jiirgen SpitalerP, Peter Puschnig®?,

Claudia Draxl?!

2 Chair of Atomistic Modelling and Design of Materials, Montanuniversitdt Leoben, Franz-Josef-StrafSe 18, A-8700 Leoben, Austria
b Materials Center Leoben Forschung GmbH, Roseggerstrafe 12, A-8700 Leoben, Austria

ARTICLE INFO

ABSTRACT

Article history:

Received 19 June 2012
Received in revised form

27 February 2013

Accepted 12 March 2013
Available online 21 March 2013

Keywords:

Elasticity

Second-order elastic constants
First-principles calculations
Density-functional theory

Elastic properties play a key role in materials science and technology. The elastic tensors at any order are
defined by the Taylor expansion of the elastic energy or stress in terms of the applied strain. In this paper,
we present ElaStic, a tool that is able to calculate the full second-order elastic stiffness tensor for any
crystal structure from ab initio total-energy and/or stress calculations. This tool also provides the elastic
compliances tensor and applies the Voigt and Reuss averaging procedure in order to obtain an evalua-
tion of the bulk, shear, and Young moduli as well as the Poisson ratio of poly-crystalline samples. In a
first step, the space-group is determined. Then, a set of deformation matrices is selected, and the corre-
sponding structure files are produced. In a next step, total-energy or stress calculations for each deformed
structure are performed by a chosen density-functional theory code. The computed energies/stresses are
fitted as polynomial functions of the applied strain in order to get derivatives at zero strain. The knowl-
edge of these derivatives allows for the determination of all independent components of the elastic tensor.
In this context, the accuracy of the elastic constants critically depends on the polynomial fit. Therefore,
we carefully study how the order of the polynomial fit and the deformation range influence the numer-
ical derivatives, and we propose a new approach to obtain the most reliable results. We have applied
ElaStic torepresentative materials for each crystal system, using total energies and stresses calculated
with the full-potential all-electron codes exciting and WIEN2k as well as the pseudo-potential code

Quantum ESPRESSO.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The investigation of second-order elastic constants (SOECs) is
an essential research topic in materials science and technology as
they govern the mechanical properties of a material. Thus, much ef-
fortis put on their calculation and measurement. Moreover, SOECs
are related to inter-atomic potentials, phonon spectra, structural
stability and phase transitions, as well as the equation of state. They
also enter thermodynamical properties like specific heat, thermal
expansion, Debye temperature, melting point, and Griineisen pa-
rameters. High-accuracy, efficient calculations based on density
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functional theory (DFT) are at the point of providing an alterna-
tive to experimental determination of elastic constants, especially
for complicated crystal structures. This is evidenced by a large
number of papers on ab initio calculations of SOECs [1-7] in the
literature. In all these works, only selected materials, i.e., exhibit-
ing a particular lattice type, have been investigated. More system-
atic work on SOECs has been presented in Refs. [8,9], which focus
on the elastic properties of ceramic materials. Recently, more sys-
tematic methodological approaches for calculating the SOECs have
been pursued in Refs. [10,11] using the computer packages CRYS-
TAL and VASP, respectively. In the present work, we introduce
ElaStic which is a tool that allows for the ab initio calculation
of SOECs using two approaches based on the numerical differen-
tiation of either the total energy or the physical stress of a crystal
as a function of the imposed strain. The current implementation
of E1laStic is interfaced with the computer packages exciting,
WIEN2k, and Quantum ESPRESSO, all of them based on DFT
[12,13]. Extensions of E1aStic to interface it with other DFT codes
will be straightforward. Furthermore, we introduce a procedure
which allows for reducing numerical errors appearing in the eval-
uation of elastic constants.


http://dx.doi.org/10.1016/j.cpc.2013.03.010
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In order to show the potential and accuracy of ElaStic, we
have applied this tool to a set of prototype materials covering
all crystal families and different types of atomic bonds (i.e., co-
valent, ionic, and intermetallic). Note that extension to van der
Waals bonded systems is straightforward as van der Waals den-
sity functionals [ 14] can be used in combination with all major DFT
codes [15]. As typical representatives of this bonding are molecu-
lar crystals with large unit cells, we, however, do not show such an
example here.

The outline of the paper is as follows: In Section 2, we introduce
the SOECs from a theoretical point of view. The algorithm that
is used by ElaStic is presented in Section 3. In Section 4, the
influence of some numerical parameters on the fitting procedure
is demonstrated with the help of a simple model. The application
of the same approach to realistic systems is discussed in Section 5.
Computational details and results for several prototype materials
are presented in Sections 6 and 7, respectively.

2. Methodology

Elastic properties are conventionally described within the
Lagrangian theory of elasticity [16]. Within this theory, a solid
can be viewed as a homogeneous and anisotropic elastic medium.
Therefore, strain and stress are homogeneous and are represented
in terms of symmetric second-rank tensors (indicated by the bold
font below). The Lagrangian strain, , and the stress, 7, are defined
as

Lo (1)
=€+ —¢€,
" 2

t=detl+e)(1+e) - 0-(1+€7", (2)

where the dot (-) indicates a tensor product; € is the physical
strain tensor, transforming a position vector r to (1 4 €) - r in
Cartesian coordinates; and o is the physical stress tensor defined
by differentiation of the total energy, E, as

19%E 3)
o=——,

V d€?
where V is the volume of the crystal. Within the linear regime, the
Lagrangian stress and strain are related by the generalized Hooke’s
law

3
T = Z Cijkl Mkl (4)

k=1

Here, the coefficients ¢y are the elastic stiffness constants of the
crystal and represent the tensor components of the forth-rank
stiffness (or elasticity) tensor, c. Eq. (4) can be inverted to the form

3
=Y Si Tt (5)

k=1

where s;j; are the components of the compliance tensor, s.

An alternative approach to elasticity is obtained by expressing
the total energy of a crystal in terms of a power series of the strain,
1, as

3 3
Vi
(0) 0
E(ﬂ)ZE(O)-i‘VoZTU ﬂij"Fj“Z Ciki Mg ++++» (6)
ij=1 Cij k=1
where E(0) and V; are the energy and volume of the reference
structure (usually the equilibrium one), respectively. In order to
simplify the expressions, it is convenient to use the Voigt notation,

in which each pair of Cartesian indices ij are replaced by a single
index «, according to

ij 11 22 33 23 13 12
a 1 2 3 4 5 6°

Using this notation, Eq. (4) reads
Ta = anﬁ urs (7)
B

where the sum runs implicitly on the Voigt components from 1 to
6. In a similar way, Eq. (6) becomes
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If the reference structure is chosen to be the equilibrium one, all
79 vanish, because in equilibrium the crystal is stress free.

According to Egs. (7) and (8), respectively, the elastic constant
Cop €an be derived using two equivalent expressions

0Ty
Cap = (9)
877/3 n=0
and
1 9% (10)
Cog = — .
4 Vo 377a371ﬂ 7=0

These derivatives are calculated at the reference configuration
(p = 0). First-principles calculation of the SOECs with the use of
Eq. (9) have been performed first by Nielsen and Martin [17,18].
This approach is preferred when the calculation of the stress ten-
sor is included in the DFT package. The available codes in which
this kind of calculation is implemented, actually obtain the physi-
cal stress o, rather than the Lagrangian stress t. Under this condi-
tion, Eq. (2) must be used to convert ¢ to 7. In the following, we
denominate the procedure based on stress calculations, i.e., on
Eq. (9), as “stress approach”. Correspondingly, the calculation of
the SOECs using Eq. (10) will be referred to as “energy approach”.
In both approaches, one first chooses a deformation type, i.e., an
appropriate strain vector (in the Voigt notation), e.g., n = (n, 1,
n, 0, 0, 0), with values of  taken around the origin. Then, numeri-
cal derivatives are taken of the resulting energy or stress curves in
dependence of the parameter 7. This procedure yields a linear com-
bination of SOECs. If the recipe is repeated for a properly chosen set
of deformation types, the values of single SOECs can be achieved
solving the resulting equations.

3. Calculation of second-order elastic constants

The standard fully-automated procedure for the calculation of
SOECs with ElaStic for an arbitrary crystal is described in the
following. As a starting point, we assume that the geometry of the
crystal has been optimized for both, cell parameters and atomic
positions, such that the equilibrium configuration is used as ref-
erence system. In this case, all the curves representing the energy
as a function of strain have a minimum at zero strain. Correspond-
ingly, the stress—strain curves are passing through the origin. The
flowchart of ELaStic asshownin Fig. 1, displays the single steps
of the procedure:

e Specify the DFT code
One of the available computer packages exciting, WIEN2Kk,
and Quantum ESPRESSO is chosen for performing the DFT
calculations. (The addition of interfaces with other ab initio DFT
codes to ElaStic is straightforward.)
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Fig. 1. Flowchart of the algorithm used in the E1laStic tool.

e Read the structure file

An input file containing information about the structure
(crystal lattice, atomic positions, etc.) should be provided. For
this purpose, ElaStic requires the input file which is used
by the selected DFT code for a calculation at the equilibrium
structure with relaxed atomic positions. The structural data
contained in the input file are read by ElaStic.
Determine the space-group number

In order to fully characterize the system crystallographically,
the space-group number (SGN) must be determined. This
is performed by the code SGROUP [19]. A classification of
the different crystal structures including the corresponding
number of independent SOECs is given in Table 1.
Deform the crystal and prepare input files

From the knowledge of the SGN, a set of deformation types
will be specified. All deformation types utilized in ELaStic are
shown in Tables 2 and 3 for the energy and stress approach,
respectively. Two input values, the maximum absolute value
for the Lagrangian strain, nmax, and the number of distorted
structures with strain values between —npa.x and nmax, should
be provided by the user at this stage. Then, input files for the
chosen DFT code are created for each deformed structure.
Perform ab initio calculations

The energy or stress for the set of distorted structures cre-
ated at the previous step is calculated by the selected DFT code.
For each deformed structure, the internal degrees of freedom
are optimized.
Calculate derivatives: Best polynomial fit

A polynomial fitting procedure is applied to calculate the
second (first) derivative at equilibrium of the energy (stress)
with respect to the Lagrangian strain. It will be discussed in Sec-
tion 4 how the order of the polynomial fit and the distortion
range can influence the values of the SOECs.
Calculate SOECs: Least-squares fit

The quadratic (linear) coefficients of the best fitting polyno-
mial achieved at the previous step can be expressed as linear
combination of the SOECs. This procedure is repeated for a num-
ber of different deformation types, thus obtaining a set of linear
equations which is (possibly) redundant in terms of the vari-
ables, i.e., of the SOECs. This set of linear equations is solved by
a least-square fit.
Calculate elastic moduli

Appropriate averaging procedures can determine isotropic
elastic constants such as the bulk, shear, and Young modulus. In
ElaStic, three of the most widely used averaging approaches
are implemented. While in the Voigt [20] approach a uniform
strain is assumed, the Reuss [21] procedure is valid for the case
of uniform stress. The resulting Voigt and Reuss moduli are ex-
pressed in terms of the stiffness constants, c;;, and compliances,

sij, respectively. In particular, the bulk and shear modulus in the
Voigt approach are

1
By = §[(Cn + €2 + €33) + 2(C12 + 13 + 23)], (11

1
Gy = I [(c11 + 22 +€33) — (C12 + €13 + C23)
+ 3(Ca4 + Cs5 + Co6)] - (12)

The corresponding expressions for the Reuss procedure are

Br = [(s11 + S22 + $33) + 2(s12 + 513 + 523)] 7, (13)
Gr = 15[4(s11 + S22 + S33) — (S12 + S13 + S23)
+3(s44 + Ss55 + Se6) |- (14)

Hill [22,23] has shown that the Voigt and Reuss elastic mod-
uli are the strict upper and lower bound, respectively. Thus, the
Hill-averaged bulk and shear moduli can be determined from
these upper and lower limits as

1
Gy = E(Gv-l-GR), (15)

1
By = E(BV+BR)~ (16)

For all the averaged procedures presented here, the Young mod-
ulus, E, and the Poisson ratio, v, can be obtained in connection
with the bulk modulus, B, and the shear modulus, G, as

9BG

E= , (17)
3B+G
3B —2G

p=—"" (18)
2(3B+G)

e Post-processing: Transform elastic tensors

ElaStic can also be used to perform some post-processing
of the obtained results. For example, E1aStic includes a tool
that converts the elastic-constants tensor from one reference
system with Cartesian coordinates x; to another one with trans-
formed coordinates X; = Zﬁzl a;x;, where aj is the cosine of the
angle between the directions of X; and x;. The transformation for
the components of the elastic-constant tensor is given by

3

Cijkl = Z Qim Qjn Akp Aiq Cmnpq (19)
m,n,p,q=1

where Cipppq (CGijia) are the second-order elastic constants in the
old (new) Cartesian coordinates.

4. Accuracy and numerical differentiation

The numerical accuracy of the elastic-constant calculations de-
scribed in the last sections is strongly correlated with the numeri-
cal differentiation needed for the evaluation of Egs. (9) and (10). In
fact, we deal with a function (energy or stress) which is calculated
only for a finite set of strain values. The evaluation of the numer-
ical derivative of a such a function is a non trivial issue. Several
parameters play an important role, like the number and range of
data points included in the fit and the kind of procedure used for
the differentiation. In addition, computed DFT data are obtained up
to a certain accuracy. In order to keep all these parameters under
control and to estimate the impact of numerical uncertainties of
energies and stresses, we have developed a special fitting proce-
dure. It will be illustrated in the next section for a simple model
where we treat the numerical error by adding random noise to the
energy (stress) values. Then, the application of this procedure will
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Classification of crystal families and systems. Centering type, Laue group, Hermann-Mauguin point-group symbols, and space-group numbers (SGN) are provided together
with the number of independent SOECs. In the last column, prototype materials are shown.

Crystal family Crystal system Centering type(s) Laue group Point group classes SGN No. of SOECs Prototype material(s)
1 452
Cubic Cubic P.F.1 G 432, 43m, 535 207-230 5 C, Al CsCl
Cu 23, 23 195-206
6 622 -
Hexagonal P Hy 62%’ Gﬁmm’ 62m, 177-194 5 Ti,TiB,
Hexagonal Hy 6,6, 168-176
32 -
Trigonal P.R 1N 32,73111, 3z 149-167 6 Al,05
Ru 3,3 143-148 7 CaMg(CO3),
A 4 2 2
Tetragonal Tetragonal P, 1 Ti 422, Aimm, a2m, 89-142 6 MegF;
Ty 4,4, 4 75-88 7 CaMo0y,
Orthorhombic ~ Orthorhombic P, C,F,I 0 222,mm2, 222 16-74 9 TiSi
Monoclinic Monoclinic P,C m, 2, % 3-15 13 Zr0,
Triclinic Triclinic P N 1,1 1and2 21 TiSi,
Table 2 4.1. An analytical example

Deformation types, expressed in the Voigt notation, that are used by ElaStic in
the energy approach. Here, the generic (i-th) strain tensor is represented as a vector
W(l) = (11, M2, N3, N, M5, Ne)-
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Table 3
Same as Table 2 for the stress approach. The choice of deformation types is made
according to Ref. [11].

71,- m M2 UK} N4 Ns N6
i n 2 3 47 51 61
7 —2n n 4n —3y 61 —51
i 37 —5n - 61 21 —4n
i@ —4n —6n 51 n —3n 2
7® 59 4n 61 —27 -7 —3p
i® —6n 3n —2n 51 —4n n

be validated for some prototypical real materials. Here, only results
for the energy approach are shown, but the extension to the stress
approach is straightforward.

In the following, we demonstrate the reliability of numerical en-
ergy derivatives by a simple test case. We assume that the energy
vs. strain relationship is known and is exactly given as a polynomial
function in the strain 5 of a certain degree. In this example, without
loss of generality, we consider a polynomial of order 6,

6
E( =) A,
i=1

with known coefficients A;. In particular, the coefficient A, is set
to A, = 100 (in arbitrary units). Obviously, in this special case, the
differentiation can be performed analytically; nevertheless, we cal-
culate the second-order derivative with standard numerical tech-
niques. Therefore, we generate a set of 51 equally-spaced strain
points with symmetric distribution around the origin in the range
n € [—0.1,0.1] and calculate the energy values using Eq. (20).
A polynomial fit yields the exact value of A, if the order of the
polynomial is equal to or larger than 6. The procedure can be re-
peated by taking into account only strain points in the range n €
[—nmax, nmax] for different values of 1. (keeping the strain-point
density fixed). The energy as a function of 5 calculated from Eq.
(20), and the value of A; as a function of 7, are shown in the left
and right top panels of Fig. 2, respectively. Due to the choice of a
symmetric distribution of strain points around the origin, the fit-
ting polynomials of order n and n+ 1 with even n provide the same
value of Ay, as can be seen in the figure. The results for the quadratic
polynomial fit are close to the correct value only for np.x < 0.01.
The fourth order fit provides the correct result for nm.x < 0.35,
while the sixth order can be used for any value of 7.

The example used here is very simple and somehow trivial.
However, the situation is different considering that the values of
the function E () are not known exactly, but include some intrinsic
numerical error introduced by calculating DFT total energies. We
simulate the effect of such errors by adding a random noise of given
amplitude to the polynomial function in Eq. (20), as given by

Ea() = E()) 4+ £ A (Emax — Emin) » (21)

where Ep.x and Enin are the maximum and minimum of the func-
tion E(n) in the range n € [—0.1, 0.1], and £ is a randomly gener-
ated number in the range & € [—1, 1].

The results for A = 0.005 and A = 0.02 are shown in the mid-
dle and lower right panels of Fig. 2, respectively. The main effect
of the noise is to generate deviations from the unperturbed curves,
strongly depending on the order of the polynomial fit, 77,2, and the
noise amplitude. Analysis of the two lower panels identifies two
different trends in dependence of the fitting order:

(20)
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Fig. 2. Energy as a function of strain  calculated from Eq. (21) for different amplitudes of noise, A = 0, 0.005, and 0.02, respectively (left) and the corresponding coefficient

A, as obtained from different polynomial fits (right).

(i) For small deformations, the best results for the derivative are
obtained by using low-order polynomial fit. The same holds
true if only a few data points are taken into account for the
fit. The better values for the derivative arise in this case from
the fact that the noise is partially averaged out using low-
order polynomials, while high-order ones follow the noise
much more, developing unphysical wiggles and, thus, yielding
completely wrong coefficients.

(ii) The results obtained for large deformations are very close to
the correct value for high-order polynomial fit, in particular, in
the strain regions where the curves in the right panel of Fig. 2
are flat.

From the previous analysis, we conclude that, for a fixed order of
the polynomial fit, the correct value of A, is best reproduced in a
region of nmax that is characterized by a plateau of the displayed
curves. For instance, for the largest noise amplitude (bottom right),
in the range nmax > 0.08 only the sixth order polynomial fit gives
reasonable results for the coefficient A;. Considering that low-order
polynomial fit gives good results only for small values of npay, the
application of a high-order polynomial fit is thus preferable. This
means, in turn, that large values of n,.x and a considerable number
of strain points should be used in order to identify the plateaus.

These results allow to establish a general criterion for finding
the best numerical derivative of a function. In practice, one needs to
identify the flat regions (plateaus), which typically move to higher
values of nma.x when applying a higher-order polynomial fit.

In addition to the above analysis, the simple model introduced
before can be used to investigate the intrinsic accuracy of the
energy values. This can be done with the help of a cross-validation
(CV) method [24-26]. In general, the CV technique allows for
optimization of the fitting procedure performed on a sample of
statistical data. Here we apply the leave-one-out cross-validation
score.

In our simple example, the statistical sample consists of N pairs
of the type (n;, E;). The CV error of a polynomial fit of order n can
be calculated as

8(") —

v = (22)

u 2
Z [Ei—p™ ()]

1
Nll

0.03

1

0.02

CV error

0.01

0.03

0.02

CV error

0.01

0.03

0.02

CV error

0.01

A=0.02

1 I ]
0.04 0.06 0.08

Tlmax

]
0 0.02 0.1

Fig. 3. The cross-validation (CV) error defined in Eq. (22) as a function of 1,y for
different values of the maximum noise amplitude for the simple model discussed
in the text. The upper, middle, and lower panel illustrate the result for A = 0 (no
noise), 0.005 (low noise), and 0.02 (high noise), respectively.

where p™ (1;) is the value at »; of the polynomial function of order
n which has been obtained by applying the polynomial fit order n
to N — 1 points of the sample, i.e., excluding the pair (n;, E;).

The CV error defined in Eq. (22) as a function of 1.y for differ-
ent orders of the polynomial fit is shown in Fig. 3. The behavior of
the different curves is similar to the corresponding ones in Fig. 2.
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Table 4

List of deformation types used in E1laStic for the different Laue groups in the energy approach. The number of deformation types, equal to the
number of independent SOECs, is denoted by Npr. Deformation types are labeled according to Table 2.

(27) p(28) 1(29)

2, 37 4’ 5 ’ [37 7 8 9 10 ,12 3 14, 5 16 17 8 19 20, 21 22
1D, 4P, @, g® g @ 5® pO (0 (D (12 (13 (4 (15 (16 p(17) P(18) P(19) PO PCD p(2)

to the results of the polynomial fit, Fig. 4 also displays the value
of the bulk modulus as obtained using the equation-of-state fit-
ting procedure proposed by Birch and Murnaghan (BM) [27]. The
trends observed for the polynomial fits in Fig. 4 are the same as
for the noisy curves of the simple model (right panel of Fig. 2). The
converged values of the bulk modulus for the polynomial and the
equation-of-state fit, as denoted by the flat part of curves in Fig. 4,
are comparable. As the equation-of-state fit is limited in its applica-
tion, ElaStic has implemented the more general polynomial-fit
procedure. The choice of the optimal fitting parameters depends
on both the material and the applied deformation type. For most
of the prototype materials reported in Section 7, results have been
obtained using a sixth-order polynomial fit with values of .y in
the range nmax € [0.05, 0.08].

5. Choice of deformations

A prominent role in ensuring high accuracy in the calculation
of SOECs is played by the choice of the deformation types selected
for each crystal structure. The list of the deformation types used
inthe E1aStic tool are presented in Tables 4 and 5 for the energy
and stress approach, respectively. In ElaStic different criteria are
followed for this choice depending on the specific kind of approach.

In the stress approach, the deformation types are defined

Laue group Npt Deformation types
Cin 3 @, g®, 9@
Hiu 5 n®, @, @ g7 58
R 6 D, @, @, @ ® O
Ry 7 (1), (2)’ (4)’ (5)‘ (8)’ (10), (11)
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Tu 7 (1)’ (4)’ (5)’ (7)’ (26)’ (27)‘ (28)
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M 13 (1 ,7<3) ﬂ(4) 77(5) ,7(6) (7)’ (12)’ (20), (24)’ (25)
N 21
Y T : T y T ¥ T '
E 438 - : n- 5 c -1
G i, 1
o 436 | +—+ BM .
5 L
3 L
g 434r =
o 5
=)
o 432} -
N 1 N 1 L 1 N 1 L
— 79.0F
= L
o 785F
8 7801
5 L
B 775F
= L
x 770F
E L
765
< 18.1F
o
o L
o 18.0F
=
= L
kS
g 17.9F
&~ L
3
@ 178}
0

nmax

Fig.4. Bulk modulus as a function of the maximum absolute value of deformation,
Nmax. for three cubic materials: diamond (upper panel), fcc Al (middle panel), and sc
CsCl (lower panel). The calculations have been performed using the WIEN2k code.

However, in this case, each plateau value gives an estimation of the
maximum noise amplitude. Therefore, for real materials, this result
can be used to check the numerical accuracy of the energy obtained
by the ab initio calculation. In fact, if a too large plateau value is
found, the accuracy of the DFT computations should be probably
improved.

4.2. Test examples for real materials

The method illustrated in the previous section can also be
applied to real systems, under the assumption that the errors in
the calculated DFT energies are statistically independent. Here we
investigate the bulk modulus considering the three cubic materials
diamond, Al, and CsCl. They are representative systems which can
be classified from the elastic point of view as hard, medium, and
soft materials, respectively.

In Fig. 4, we show the result of WIEN2k calculations as a func-
tion of nmax and for different orders of the polynomial used in the
fitting procedure. As explained in the previous section, only even
values of the polynomial order are significant. The deformation
type which is used here is a uniform volume change. In addition

according to Ref. [11]. Here, deformations corresponding to the so-
called universal linear-independent coupling strains [11] are used.
Although the corresponding deformed structures exhibit very low
symmetry, this choice requires only a small number of deformation
types.

A different criterion is followed in the energy approach. We
have chosen a set of deformation types where the symmetry of the
unperturbed system is least reduced by applying strain. There are
two reasons for this: The first one is to minimize the computational
effort as DFT codes can make use of symmetry. Second, low sym-
metry may also lead to very slow convergence with respect to com-
putational parameters as has been reported in the literature [28].

The choice of too large values for n,.x should be avoided due
to the possible onset of a phase transition. For instance, this hap-
pens in the calculation of c44 of cubic diamond when applying the
7®® deformation type. The total energy as a function of strain for
this case is shown in Fig. 5. It exhibits a kink at » = 0.08 related to
the onset of a phase transition from the (deformed) diamond struc-
ture to a lamellar rhombohedral system where the carbon sheets
are oriented orthogonally to the (1, 1, 1) direction of the cubic di-
amond structure.

6. Computational details

The energies and stresses of the distorted structures are
calculated using the DFT codes exciting, WIEN2k, and Quantum
ESPRESSO. In all these codes, the Kohn-Sham (KS) equations
of DFT [13] is solved self-consistently. However, they differ in



R. Golesorkhtabar et al. / Computer Physics Communications 184 (2013) 1861-1873 1867

Table 5

List of deformation types used in ELaSt ic for the different Laue groups in the stress
approach. The number of deformation types is denoted by Npr. Deformation types
are labeled according to Table 3.

Table 7

Computational parameters used for lattice optimization and elastic-constant
calculations with the Quantum ESPRESSO code. Kinetic-energy cutoffs (E.,) and
smearing values (osmear) are given in Ry.

Laue group Npr Deformation types

Cun 1 7"

Hip 2 i,

Rin 2 i, 7@

Tin 2 “(1)7 77(3)

0 3 ;,(1)’ ﬁ(3)’ ﬁ(S)

M 5 ﬁ(U’ ﬁ(Z)’ 77(3), ;7(4), ﬁ(S)

N 6 7~1<1), 7~7(2>, ﬁ(3), ;7<4)’ 77(5), ﬁ(G)

-152.15

-152.20

-152.25

Energy (Ry)

-152.30

-152.35

L 1 " " i
-0.10 -0.05 0.00 0.05 0.10
n

Fig. 5. Total energy of the deformed diamond structure by applying the #*® de-
formation type. At n = 0.08, the kink indicates the transition to a different rhom-
bohedral structure.

Table 6

Computational parameters used for lattice optimization and elastic-constant
calculations with exciting and WIEN2k. Smearing values (osmear) are given in Ry,
muffin-tin radii (Ryr) are in atomic units.

Material Atom Ryt RmrKinax k-mesh Osmear
C C 1.15 8.0 15 x 15 x 15 -
Al Al 2.00 9.0 36 x 36 x 36 0.025
CsCl Cs 2.00 9.0 15 x 15 x 15 -
Cl 2.00
Ti Ti 2.00 8.0 16 x 16 x 9 0.010
TiB, Ti 2.23 9.0 15 x 15 x 12 -
B 1.54
Al,05 Al 1.64 8.0 8x8x8 -
(0] 1.64
MgF, Mg 1.80 8.0 10 x 10 x 16 -
F 1.40
CaMoO4 Ca 1.60 8.0 8x8x8 0.010
Mo 1.60
(0] 1.50
TiSi, Ti 2.10 85 8x8x8 -
Si 150
Zr0, Zr 1.75 8.0 7x8x7 -
(0] 1.55
TiSi, Ti 2.00 8.5 14 x 12 x 14 -
Si 2.00

the choice of the basis set representing the KS orbitals. While
exciting and WIEN2k are based on the full-potential (linearized)
augmented plane-wave and local-orbitals (FP-(L)APW+lo) method,
the Quantum ESPRESSO software package relies on a plane-wave

Material EO E(tho) k-mesh Osmear
C 80 480 15x15x 15 -
Al 80 800 36 x 36 x 36 0.025
Ti 80 800 16 x 16 x 9 0.010
TiB, 100 1000 15 x 15 x 12 -
Al,05 80 800 8x8x8 -
MgF, 80 800 10 x 10 x 16 -
CaMoOg4 80 800 8x8x8 0.010
TiSi, 80 800 8x8x8 0.010
Zr0, 80 800 7x8x7 -

basis set and the pseudo-potential approximation. In the most
recent implementations, the direct calculation of the stress tensor
is available only for the Quantum ESPRESSO package; therefore all
our results for the stress approach have been obtained by using this
code.

First-principles calculations have been performed for a set
of materials. At least one representative crystal for each crystal
system has been chosen. Extensive tests for each considered crystal
have been carried out to ensure that the calculated properties
are converged within a certain accuracy, with respect to all
computational parameters, e.g., the k-point mesh, the basis set size,
and the expansion of the charge density. The main computational
parameters which have been used to perform the calculations
presented in this work are shown in Tables 6 (for exciting and
WIEN2k) and 7 (for Quantum ESPRESSO).

In all calculations exchange-correlation effects have been
treated within the generalized-gradient approximation (GGA) with
the PBE [29] functional. The accuracy of the PBE functional in
providing results for elastic constants has been already shown in
the literature [1-7]. Exceptionally, for the calculation of CsCl we
have used the PBEsol [30] exchange-correlation functional which
allows for a better description of the inter-atomic bonding, in
particular for systems which are characterized by small values of
SOECs, such as CsCl. In fact, the agreement with experimental data
for the elastic constants is improved from about 21% deviation to
less than 2% using PBEsol instead of PBE.

For the integration over the Brillouin zone, we have employed
the improved tetrahedron [31] method as well as summations
over special points within the Monkhorst-Pack [32] scheme. For
metallic systems, the Gaussian-smearing technique [33] has been
applied. For lattice relaxations, convergence has been achieved for
residual forces and stresses lower than 0.1 mRy/bohr and 50 MPa,
respectively.

7. Results

In this section, we present the results for the SOECs obtained by
the E1aStic code. Our main goal consists in showing the reliabil-
ity of results and used procedures. We are not particularly aiming
at matching experimental values, which could be obtained under
conditions which are different from the ones considered for the cal-
culations. For instance, theoretical data obtained using DFT should
be interpreted only as T = 0 K values, while most experiments are
performed at room temperature.

For the ab initio calculation of the SOECs, first one has to
optimize lattice parameters and ionic positions. This optimization
has been performed for all the crystal systems we have studied.
The results for the equilibrium lattice parameters of the different
materials are shown in Table 8 for all the used codes. The errors
concerning the numerical differentiation have been minimized
by using the procedure shown in Section 4. Obviously, the
different codes (exciting, WIEN2k, and Quantum ESPRESSO)
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Table 8

Optimized lattice parameters (a, b, and c, in atomic units) and angles («, 8,and y, in
degrees) for representative materials. X, W, and @ denote calculations performed
with the codes exciting, WIEN2k, and Quantum ESPRESSO, respectively. For
elemental Ti, the labels (us) and (paw) indicate the use of ultra-soft pseudo-
potentials or the Projector-Augmented-Wave method, respectively. The quoted
references refer to experimental values.

Material Code a b c o B y
C x 6.747
w 6.749
Q 6.741
[34] 6.741
Al W 7.636
Q 7.669
[35] 7.653
CsCl w 7.702
[36] 7.797
Ti W 5.552 8.803
@ P 5.555 8.791
Q® 5.412 8.554
[37] 5575 8.844
TiB, w 5.729 6.107
Q 5.727 6.079
[38] 5.726 6.108
Al,0; w 9.800 55.28
Q 9.741 55.29
[39] 9.691 55.28
CaMg(CO3), @ 11.439 47.24
[40] 11.363 47.12
MgF, w 8.898 5.857
Q 8.873 5.855
[41] 8.721 5.750
CaMo0y, w 10.003 21.931
Q 10.061 21.881
[42] 9.868 21.590
TiSi, w 9.072 15.654 16.200
Q 9.048 15624 16.204
[43] 9.071 15.628 16.157
Zr0, w 10.128 9812  9.931 99.63
Q 10.138  9.786  9.897 99.62
[44] 10.048 9733  9.849 99.23
TiSi, w 9284 9.047 11264 53.04 51.14 7582

and different approaches (energy and stress) should achieve very
similar results. If this is not the case, the failure should be attributed
to the one or the other approximation which is implicit in the
theoretical methods or in their implementation.

Below, results for the different types of crystal structures are
discussed separately.

7.1. Cubic family

For cubic crystal structures, the second-order elastic tensor is
fully determined by three independent elastic constants. We have
chosen three examples representing different ranges of elastic
moduli: diamond, Al, and CsCl, which are known as hard, medium,
and soft material, respectively. Hard materials, like diamond,
are characterized by very deep energy-strain and very steep
stress—strain curves. This situation corresponds to relatively large
values of SOECs. On the other hand, in soft materials like CsCl, the
curves representing the energy/stress as a function of the strain are
much flatter, which can cause larger errors in the resulting elastic
properties. In fact, while a given accuracy in the evaluation of the
total energy may lead to small errors for hard materials, the same
accuracy may yield large errors for a soft material.

In Tables 9 and 10, the SOECs obtained with different ap-
proaches and codes are shown. As can be seen in Table 9, all the

Table 9

Elastic constants (c,g) for single-crystal C with the cubic diamond structure. We also
show results for the isotropic bulk (B) and shear (G) modulus for poly-crystalline
samples obtained using both the Voigt and Reuss averaging procedure. (Note that
for cubic structures By = Bgx = B.) The Young’s modulus (E) and Poisson’s ratio (v)
are estimated from Hill’s approximation. All data except v, which is dimensionless,
are given in GPa. The symbols ‘W, X, and @ denote calculations performed with the
codes WIEN2k, exciting, and Quantum ESPRESSO, respectively. The subscripts &
and 7 indicate the use of the energy and stress approach, respectively.

Source: Experimental values for the elastic constants are taken from Ref. [45], the
experimental elastic moduli are obtained from these values using Eqs. (11)-(18).

C We Xe Q¢ Q. [45]
C11 1052.3 1055.9 1052.7 1053.0 1077.0
C12 125.0 125.1 1215 121.3 124.6
C4q 559.3 560.6 560.3 560.6 577.0
B 4341 435.4 431.9 431.8 4421
Gy 521.0 522.5 522.4 522.7 536.7
Gg 516.7 518.2 518.2 518.4 532.0
Ey 1113.1 1116.3 1113.7 1114.0 1142.6
vy 0.07 0.07 0.07 0.07 0.07
Table 10

Same as Table 9 for Al (left) and CsCl (right) in the cubic structure.
Source: Data from Refs. [45,46] are experimental values.

Al CsCl

We Q¢ Q. [45] We [46]
C1q 1121 109.3 109.0 108.0 36.9 36.4
C12 60.3 57.5 57.7 62.0 8.4 8.8
Cag 32.8 30.1 34.6 28.3 8.4 8.0
B 77.6 74.8 74.8 77.3 17.9 18.0
Gy 30.1 28.4 31.0 26.2 10.8 10.3
Gr 29.7 28.3 304 259 10.8 9.6
Ey 79.4 75.5 81.1 70.2 26.2 25.2
VY 0.33 0.33 0.32 0.35 0.26 0.27

theoretical results for diamond are very similar and very close to
calculated [11] and experimental data [45]. In Ref. [11] the elastic
constants have been computed from stress using the VASP code.
The largest deviation, between our results and experimental data,
is found for the values of c;; and c44 which appear smaller than
in experiment. The tendency of GGA to slightly overestimate the
bonding strength corresponds to an underestimation of the crys-
tal’s stiffness. For Al and CsCl, the agreement of all the values with
their experimental counterparts (see Table 10) is also very good.

7.2. Hexagonal family

Among the two members of the hexagonal family (see Table 1),
we first discuss the primitive hexagonal structures. There are five
independent elastic constants. As representative for this crystal
system, the elemental metal Ti and the metal-like ceramic TiB,
have been chosen. According to the results presented in Tables 11
and 12, elastic constants for TiB, obtained with different methods
and codes are very similar, while for Ti large deviations are ob-
served among theoretical results obtained with different pseudo-
potentials. SOECs calculated using the PAW method [47], are very
close to the ones obtained by the WIEN2k code. In contrast, the
results based on ultra-soft (us) potentials [48] are significantly
different. These deviations indicate a failure of this kind of pseudo-
potential approximation for describing the metallic interaction in
hexagonal titanium.

In Tables 13 and 14, we list the calculated elastic constants
for materials belonging to the trigonal family. In trigonal lattices,
there are either six or seven independent elastic constants, and the
two cases are distinguishable on the basis of the SGN. We have
chosen Al,03 and CaMg(CO3), as examples for the Laue groups
R; and Ry, respectively. The calculation of the SOECs for trigonal
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Table 11
Same as Table 9 for TiB; in the primitive hexagonal structure.
Source: Data from Ref. [49] are experimental values.

TiB, We Q¢ Q. [49]
c1 652 654 652 660
12 69 71 69 48

C13 103 100 98 93

C33 448 459 463 432
Caq 258 260 259 260
By 256 256 256 247
Bg 250 251 251 240
Gy 260 262 262 266
Gg 254 257 257 258
Ey 576 581 581 579
vy 0.12 0.12 0.12 0.10

Table 12

Same as Table 9 for Ti in the primitive hexagonal structure. The labels (us) and (paw)
indicate the use of ultra-soft pseudo-potentials and the PAW method, respectively.
Source: Data from Ref. [50] are experimental values.

Ti We Q™ Q™ [50]
n 179 174 190 160
12 85 85 99 90
C13 74 77 91 66
33 187 181 213 181
Cas 44 44 39 46
By 112 112 128 105
By 112 112 128 105
Gy 48 46 45 44
Gy 48 46 44 2
Ey 125 120 120 114
vy 0.31 0.32 0.34 0.32

crystals deserves special attention. First, there is an intrinsic dif-
ference between trigonal crystal structures of type P and R (see
Table 1). In contrast to the structures with R centering, the prim-
itive P structures are treated on the same footing as the primitive
hexagonal ones. Second, the default choice of the reference Carte-
sian coordinate frame used for these crystals is not the same for all
DFT codes. As a consequence, for the trigonal family, the calculated
second-order elastic matrix can be different as well, as demon-
strated below. The different choices of the default Cartesian ref-
erence frame defined in E1aStic for the DFT codes considered in
this work are presented in the Appendix (Table A.20).

According to the literature concerning the SOECs in trigonal ma-
terials with R centering type, the sign of cy4 and cy5 is an open
issue. Different signs of cy4 of Al,03 are found in experimental
[51-54] as well as theoretical work [55-58]. These discrepancies
may be related to the ambiguity in the choice of the Cartesian co-
ordinate frame for the trigonal structure of type R. In the literature,
this structure is often referred to as rhombohedral, and this denom-
ination will be adopted in the following. Systems with rhombohe-
dral symmetry can be described using a supercell with hexagonal
symmetry. The setting of the hexagonal primitive cell with respect
to the rhombohedral unit cell is not unique, allowing for different
choices of the Cartesian reference frame. An additional complica-
tion appears, as in different DFT codes the Cartesian frames are
defined differently (see Table A.20). In order to sketch the situa-
tion, we show in Fig. 6 two different choices for the hexagonal unit
cell for the rhombohedral cell of Al,05 together with the rhom-
bohedral primitive vectors projected onto the xy plane. The two
Cartesian reference frames are labeled by “+" and “—", which cor-
respond to the sign of cy4 in our calculated examples. As can be
seen in Tables 13 and 14, our calculated values of cy4 for Al,03 and
CaMg(C03), are negative, which is consistent with the choice of
the “—" Cartesian coordinate system in the E1aStic code.

(+) . )

yd x

Fig. 6. Two possible choices for Cartesian coordinates in the trigonal R (rhombohe-
dral) structure. For the coordinate system in the right (left) panel, negative (positive)
values are obtained for cy4 for Al,03. Black bold lines indicate the projection of the
primitive rhombohedral lattice vectors onto the xy plane. The shaded (green) areas
correspond to the hexagonal primitive cells. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 13
Same as Table 9 for Al, O3 in the trigonal R; structure.
Source: Data from Ref. [50] are experimental values.

AL, 03 We Q¢ Q. [50]

1 453.4 463.8 460.9 497.4
c12 151.2 148.5 148.7 164.0
c13 108.0 107.9 107.8 112.2
Ci4 —20.5 —20.3 —20.4 —236
C33 452.0 469.9 466.4 499.1
Ca4q 132.2 139.0 137.6 147.4
By 232.6 236.2 235.2 252.3
Bg 232.2 236.0 2349 251.8
Gy 149.2 156.0 154.5 166.0
Gr 144.7 151.7 150.2 160.6
Ey 364.1 379.3 375.8 403.0
vy 0.24 0.23 0.23 0.23

Table 14

Same as Table 9 for CaMg(COs3), (dolomite) in the trigonal Ry, structure.
Source: Data from Ref. [59] are experimental values.

CaMg(CO03), Q¢ Q. [59]

e 1943 1945 205.0
1 66.5 66.7 71.0
13 56.8 56.4 57.4
1 —175 —17.7 —195
s 115 11.1 137
33 1085 107.4 113.0
Cas 38.8 38.6 39.8
By 95.3 95.0 99.4
By 87.2 86.6 90.3
Gy 494 494 51.8
Gr 39.4 39.3 39.7
Ey 1147 1144 11822
i 0.29 0.29 0.29

7.3. Tetragonal and orthorhombic families

Our results for crystals with tetragonal T; and Ty as well as
orthorhombic symmetry are summarized in Tables 15-17, respec-
tively. In tetragonal systems, there are either six (T; class) or seven
(Ty) independent elastic constants. We have studied MgF, and
CaMo0O, as examples for the T and Ty, lattice types, respectively. All
calculated results are in reasonable agreement with experiment.
The stress and energy approach, as well as the use of WIEN2k and
Quantum ESPRESSO, lead to similar elastic constants, except for
c1 for CaMoO,4 obtained with the WIEN2k code.

The SOECs for the orthorhombic system TiSi, are listed in
Table 17. In this case, there are nine independent elastic con-
stants. The comparison between the values obtained by pseudo-
potential calculations with the full-potential and experimental
results shows large deviations for some elastic constants, e.g.,
€13, C22, C33, and cgg. Such discrepancies have also been reported
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Table 15
Same as Table 9 for MgF; in the tetragonal T; structure.
Source: Data from Ref. [60] are experimental values.

MgF, We Q¢ Q. [60]
c11 130.0 127.0 126.5 123.7
C12 78.2 80.1 79.8 73.2
c13 54.7 57.3 57.6 53.6
C33 185.0 187.7 187.3 177.0
Cag 50.5 50.8 50.7 55.2
Ce6 83.0 87.2 87.2 97.8
By 91.1 92.3 92.2 87.2
Br 90.5 914 913 86.4
Gy 54.0 54.2 54.0 57.9
Gr 46.7 45.2 45.0 48.1
Ey 127.4 126.3 126.0 132.1
vy 0.27 0.27 0.27 0.25
Table 16

Same as Table 9 for CaMoOy in the tetragonal Ty structure.
Source: Data from Ref. [61] are experimental values.

CaMoOy We Q¢ Q. [61]
C11 1234 126.9 125.9 144.7
C12 439 58.0 57.5 66.4
Ci3 48.7 46.6 46.0 46.6
i 8.1 10.2 10.1 134
C33 109.3 110.0 109.3 126.5
Ca4 315 29.0 28.7 36.9
Ces 37.4 342 342 45.1
By 71.0 74.0 73.4 81.7
Bg 70.9 73.2 72.6 80.5
Gy 344 32.6 324 40.9
Gr 335 31.1 30.9 38.7
Ey 87.8 83.5 83.0 102.6
vy 0.29 0.31 0.31 0.29
Table 17

Same as Table 9 for TiSi, in the orthorhombic structure. For titanium, an ultra-
soft pseudo-potential has been used for calculations performed with Quantum
ESPRESSO.

Source: Data from Ref. [62] are experimental values.

TiSi, We Qe Q. [62]
on 3125 297.9 306.4 3204
N 27.9 185 248 29.3
i3 3.8 1233 1123 86.0
o 306.3 2122 2046 317.5
3 21.1 312 315 38.4
33 406.4 481.9 495.8 4132
Cas 73.1 736 732 75.8
Css 106.4 108.7 100.0 1125
Cot 117.3 975 106.0 117.5
By 1434 1487 149.4 150.9
Bk 139.4 124.0 124.1 146.8
Gy 118.8 1105 111.7 1209
Gk 110.0 101.2 1016 1129
Ey 270.3 252.3 253.9 278.1
v 0.180 0.190 0.190 0.188

in Ref. [11]. Like before, we assign them to the pseudo-potential
approximation.

7.4. Monoclinic and triclinic families

The monoclinic structure is characterized by thirteen indepen-
dent elastic constants. Due to the large number of SOECs and the
low symmetry, calculations for this structure family are compu-
tationally more demanding than for the previous ones. We have
chosen ZrO, as representative material.

Theoretical data for monoclinic zirconia are listed in Table 18.
The choice of Cartesian reference frame for monoclinic structures
in the codes Quantum ESPRESSO and WIEN2k is different, as
shown in Appendix. Therefore, in order to compare results of

Table 18

Same as Table 9 for ZrO, (zirconia) in the monoclinic structure.

Source: Data from Ref. [9] are obtained using the CASTEP code and the stress
approach whereas Ref. [63] is the experiment.

Z10, We Qe Q. 19] [63]
n 356 334 333 341 361
1 161 151 157 158 142
13 76 82 85 88 55
s 32 32 28 29 —21
P 361 356 363 349 408
3 120 142 154 156 196
s -3 ) -6 -4 31
33 217 251 258 274 258
C3s5 2 7 3 2 —18
Cas 80 81 80 80 100
a6 -16 —15 —15 —14 23
Css 69 71 71 73 81
Ce6 113 115 115 116 126
By 183 188 194 196 201
Bx 163 174 181 187 175
Gy 91 91 90 91 91
Gr 83 84 83 84 84
Ey 223 226 225 229 226
v 0.28 0.29 0.30 0.30 0.29

different codes, we have transformed all the elastic constants to the
Cartesian coordinate system used in experiment [63] applying Eq.
(19). Deviations between theory and experiment may be related to
temperature effects.

Triclinic structures exhibit the lowest symmetry, where all the
21 Voigt components of the elastic tensor are independent. More-
over, triclinic materials typically, have more than ten atoms in the
unit cell. Hence, in this case the calculations are very demanding.
In order to make calculations feasible at reasonable computational
cost, we have chosen the primitive orthorhombic cell of TiSi; as an
example, but treating it without considering symmetry. Instead of
comparing with experiment, we have made a comparison between
the elastic constants calculated directly for the triclinic primitive
unit cell and those obtained from the transformation of the previ-
ous results for the orthorhombic unit cell. The comparison is shown
in Table 19.

8. Summary and discussion

We have introduced ElaStic, a tool for calculating second-
order elastic constants using two alternative approaches, based
on the calculation of the total energy and stress, respectively. The
two approaches provide equivalent results, but have some intrinsic
differences.

The stress approach allows to use a much smaller set of de-
formations, thus reducing the computational effort. Furthermore,
only first-order derivatives have to be calculated, which improve
the accuracy of numerical differentiation. However, the symme-
try of the distorted structures in this case is lowered to monoclinic
or triclinic, thereby increasing CPU time and memory consump-
tion. In order to achieve the same accuracy by directly computing
the stress tensor rather than through total-energy calculations, of-
ten computational parameters (e.g., kinetic-energy cutoff, k-point
sampling, etc.) have to be readjusted, which increases the compu-
tational costs. In addition, this direct calculation of the stress tensor
is not available in every considered code.

On the other hand, a larger number of distortion types must
be considered for the energy approach, which also requires the
numerical calculation of second-order derivatives. Deformation
types, however, can be selected such to preserve the symmetry
of the reference system as much as possible. For more symmet-
ric crystal structures, e.g. cubic or hexagonal, both approaches are
equally suitable, but for less symmetric crystal structures like mon-
oclinic or triclinic systems, the stress approach is more efficient.
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Table 19

1871

Elastic constants (in GPa) for single crystal TiSi, in the triclinic structure calculated using the WIEN2k code. Values of the first row are the results from direct calculations in
the triclinic unit cell; the second row is obtained by transforming the results from the centrosymmetric orthorhombic unit cell (lattice class O) to the triclinic structure (N)

using Eq. (19).

Ci Ci2 C13 Cig Cis Ci6 2 C23 Co4 Cos C26 C33 C34 €35
Direct calculations 354.5 42.2 88.6 —314 274 —144 2841 48.9 17.2 7.5 14.8 287.3 —17.0 —46
Transform from O to N 361.1 39.8 89.6 —338 304 —15.3 285.0 48.8 15.4 5.9 14.0 288.4 -17.7 =31
36 Caq Cas Cap Cs5 Cs6 [ By B Gy Gr Ey VH
Direct calculations —14.0 128.9 —4.0 —8.8 119.3 —17.5 926 142.8 139.3 117.9 109.6 269.0 0.18
Transform from O to N —15.4 129.3 —8.2 —-83 120.0 —184 929 143.4 1394 118.8 110.0 279.4 0.18
Table A.20

Lattice type (in the Laue group notation of Table 1), centering type(s), and Cartesian components of conventional
lattice vectors (a, b, and c) as defined in ElaStic wﬁen using the codes exciting (X), WIEN2k (W), and Quantum
ESPRESSO (Q). «, B, and y are the angles l;: ac, and ab, respectively. The symbol &; (k) represents the sine (cosine) of
the angle ¥. M® and M‘© indicate the monoclinic crystal system with the b and ¢ axis as unique axis, respectively.

Laue group Centering type(s) a b c X w Q
Ciu P,F,1 (a,0,0) 0,a,0) 0,0,a) v 4 v
Fu P (@,0,0) (~1aLa0) 0.0 o
P v v v
Rin
~ 1= 2 ~ ~ 1=
R (a, —ﬁa, h) (0, ﬁa, h) (—a, —ﬁa, h) v v v
Tin P, 1 (a,0,0) 0,4a,0) 0,0,¢) 4 v v
(6] P,C,F,I (a, 0,0) (0, b, 0) (0,0,c¢) v v v
M® P, C (a, 0,0) (0, b, 0) (ckp,0,c&p) X X v
M© P.C (a,0,0) (bky,b§,,0) 0,0,¢) 4 x v
(a&y,aky,0) (0, b, 0) (0,0,¢) V4 x
N P (a,0,0) (br,,bE,,0) (ckp, € w) vV
a= ag:a/Z
h=a/1- 3562,
¢ = CEV’1 (ka — kg 1)

w= CSV’I\/I + 2kakpic, — K2 — Kﬁ2 — K2

In order to demonstrate the ability and trustability of E1laStic,
we have presented SOECs for prototypical example materials of all
crystal families. The results produced with different codes based
on total-energy calculations, are in good agreement with each
other. Comparing results from the total-energy and the stress
approach calculated with Quantum ESPRESSO are also consistent,
emphasizing that both procedures are suitable and comparable for
the calculations of elastic constants.

Finally, we want to emphasize that it is crucial to precisely de-
termine numerical derivatives of the energy (or stress) of a crystal
with respect to the Lagrangian strain in order to obtain reliable re-
sults for elastic constants. To this extent, we have developed a nu-
merical method which allows to do so in an automatized manner.

ElaStic is freely available and can be downloaded from
http://exciting-code.org.
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Appendix
In general, crystal properties that are expressed by a tensor or

a matrix, like elastic properties, depend on the choice of both the
crystal axes and the Cartesian reference frame. That means than

the value of the elastic constants may change from one choice to
another. Therefore, the comparison of calculated elastic constants
with results of other calculations or experimental data is only
possible provided the chosen crystal axes and reference frame
are identical. For the sake of clarity, we present the definition of
the standard reference (STD) for the crystal axes and the Cartesian
reference frame which are used by ElaStic when dealing with
different DFT computer packages. In addition, we show the
independent components of the second-order elastic tensor for all
the crystal types following from the STD. In the determination of
the STD, E1laStic follows the Standards on Piezoelectric Crystals
(1949), as recommended in Ref. [64].

For high-symmetry crystal systems, such as the cubic one, this
choice of reference is obvious. However, the situation is different
for lower-symmetry structures. Due to this fact, different software
packages may define Cartesian coordinate axes in different ways
which are not necessarily the same as the STD. For instance, the
definition of the Cartesian coordinate system for the hexagonal
crystal family in WIEN2k is different from the standard one.
Furthermore, for some crystals, there exists more than one choice
of reference axes which are compatible with the standard, which is,
e.g., the case for the monoclinic crystal system. For this system, the
lattice vector parallel to the two-fold axis, which is called unique
axis, could be either b or c. We denote these different choices as
M® and M©, respectively. The non-zero SOECs are different for
these two cases (see Table A.21).

The Cartesian components of conventional (primitive) lattice
vectors (a, b, and c) as defined in ElaStic when applied in
combination with different codes are shown in Table A.20. In
the subsequent Table A.21, we display the independent SOECs
corresponding to each lattice type for the STD.
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Table A.21

Symmetry properties of the matrix of SOECs for each Laue group class. Elastic constants are referred to Cartesian

axes according to Table A.20.

Laue group

Ciu Hin R Ry T Ty 0 M® M© N
1 C1 1 C1 C1 C1 C1 C11 C1 C1
C12 C12 C12 C12 C12 Ci2 C12 C12 C12 C12
C12 C13 C13 C13 C13 C13 C13 C13 C13 C13
0 0 C14 C14 0 0 0 0 0 C14
0 0 0 C1s 0 0 0 C1s 0 C1s
0 0 0 0 0 Ci6 0 0 Ci6 Ci6
C11 Ci C11 C1 Ci Ci €22 €22 2 €2
C12 C13 C13 C13 C13 C13 C23 C23 C23 C23
0 0 —C14 —C14 0 0 0 0 0 Co4
0 0 0 —C15 0 0 0 Cas 0 Cas
0 0 0 0 0 —C16 0 0 C6 C6
C11 C33 (33 C33 (33 C33 C33 C33 C33 C33
0 0 0 0 0 0 0 0 0 C34
0 0 0 0 0 0 0 C35 0 C35
0 0 0 0 0 0 0 0 C36 C36
Caq Ca4 Caq C44 Caq Caq Ca4 C44 Caq C44
0 0 0 0 0 0 0 0 C45 Cy45
0 0 0 —C15 0 0 0 Ca6 0 Ca6
Cas Caq Caq Caq Caq Caq Css Css Css Css
0 0 C14 Ci4 0 0 0 0 0 Cs6

1 1 1
Cag 3 (c1n —c12) 3 (11 —c12) 3 (11 —c12) Ce6 Ce6 Ce6 Ce6 Ce6 Ce6

Sometimes it is useful to transform the second-order elastic
tensor to a different choice than the STD for the Cartesian frame.
This can be accomplished with the help of Eq. (19), from the
initial reference axes to the final coordinate system by applying the
proper transformation matrix. In the following, we present some of
the matrices that may be needed to transform the elastic constants.

e To transform the hexagonal crystal family (hexagonal and
trigonal crystal systems) from the STD, which is used by
ElaStic, to the coordinate system applied by WIEN2k, one has
to use the following transformation matrix

J3 001

5 3 0
2 2
0 0 1

e As can be seen in Table A.20, there are two types of settings
for monoclinic crystals in Quantum ESPRESSO. The elastic
constants can be transformed from the M® to the M©
representation by using the transformation matrix

10 0
Ta "% =(0 0 -1 (A2)
01 0

e The monoclinic settings of M© in Quantum ESPRESSO and
WIEN2k are different. The SOECs are comparable if the following
matrix is applied to transform the calculated result of Quantum
ESPRESSO to WIEN2k,

—sin(y) cos(y) O
T = [ —cos(y) sin(y) 0 (A3)
0 0 1
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